Zpravodaj Hnědé uhlí 2017, 57(1):3-18

Regenerativní záchyt oxidu uhličitého z energetických procesů

Ing. Marek Staf, Ph.D., doc. Ing. Karel Ciahotný, CSc., Ing. Eva Krtková

Studie se věnuje možnostem, které skýtá metoda vysokoteplotní karbonátové smyčky pro cyklický záchyt oxidu uhličitého. Diskutována je separace uvedeného skleníkového plynu ze spalin produkovaných při výrobě elektrické energie, tepla a též při významných průmyslových procesech. Na základě literárních pramenů je tato metoda porovnána s jinými absorpčními a adsorpčními postupy. Základní provozní parametry metody se opírají o literární rešerši a vlastní laboratorní měření realizované na aparatuře s pevným ložem sorbentu. Pomocí údajů z Integrovaného registru znečišťování životního prostředí a dalších veřejných databází byl vyhotoven a kriticky vyhodnocen přehled významných zdrojů oxidu uhličitého v České republice.

Keywords: oxid uhličitý, spaliny, vysokoteplotní sorpce, energetika

Regenerative method of carbon dioxide capture from energy processes

The study deals with the opportunities offered by the method of high-temperature carbonate loop for cyclic regenerative carbon dioxide capture. Separation of the mentioned greenhouse gas from the exhaust flue gases produced during the production of electricity, heat, and also in major industrial processes is discussed. Based on literary sources, this method is compared with other absorption and adsorption procedures. The basic operating parameters of the method are based on literary research and laboratory experimental measurements carried out on the apparatus with the sorbent fixed bed. Survey of the important sources of carbon dioxide in the Czech Republic was elaborated and critically evaluated using data from the Integrated Pollution Register and other public databases.

Keywords: carbon dioxide, flue gas, high temperature sorption, power industry

Published: March 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Staf, M., Ciahotný, K., & Krtková, E. (2017). Regenerative method of carbon dioxide capture from energy processes. Zpravodaj Hnědé uhlí57(1), 3-18
Download citation

References

  1. Intergovernmental panel on climate change. https://www.ipcc.ch/pdf/assessmentreport/ar5/wg1/WG1AR5_Chapter08_FINAL.pdf, pp. 73-79 (accessed Oct 08, 2016).
  2. US Environmental Protection Agency. Global Greenhouse Gas Emissions Data. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed Sep 18, 2016).
  3. Global Carbon Project. Global Carbon Budget Data. http://www.globalcarbonproject.org/carbonbudget/15/data.htm (accessed Sep 03, 2016).
  4. BODEN, T.A., MARLAND, G., ANDRES, R.J.: National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, pp. 1751-2011, 2015.
  5. SALINAS, C.X., MENDIETA, J.: Numerical model to assess the impact of the strategies to mitigate desertification. Mitigation and Adaptation Strategies for Global Change, 18 (5), pp. 551-566, 2013. Go to original source...
  6. ARMAH, F.A., ODOI, J.O., YENGOH, G.T., OBIRI, S., YAWSON, D.O., AFRIFA, E.K.A.: Food security and climate change in drought-sensitive savanna zones of Ghana. Mitigation and Adaptation Strategies for Global Change, 16 (3), pp. 291-306, 2011. Go to original source...
  7. MISRA, A.K.: Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India). Mitigation and Adaptation Strategies for Global Change, 18 (5), pp. 673-689, 2013. Go to original source...
  8. KIRCH, W., MENNE, B., BERTOLLINI, R..: Extreme Weather Events and Public Health Responses, 1st ed., Springer-Verlag: Heidelberg, 2005. Go to original source...
  9. POWELL, J.P., REINHARD, S.: Measuring the effects of extreme weather events on yields. Weather and Climate Extremes, 12, pp. 69-79, 2016. Go to original source...
  10. LELIEVELD, J., PROESTOS, Y., HADJINICOLAOU, P., TANARHTE, M., TYRLIS, E., ZITTIS, G.: Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137 (1), pp. 245-260, 2016. Go to original source...
  11. SCHREURS, M.A., TIBERGHIEN, Y.: Multi-Level Reinforcement: Explaining European Union Leadership in Climate Change Mitigation. Global Environmental Politics, 7 (4), pp. 19-46, 2007. Go to original source...
  12. The Paris Agreement. United Nations Framework Convention on Climate Change. http://unfccc.int/paris_agreement/items/9485.php (accessed Oct 20, 2016).
  13. 7. d Paris Agreement. United Nations Treaty Collection. https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en (accessed Oct 20, 2016).
  14. ALBRECHT, J., FRANCOIS, D., SCHOORS, K.: A Shapley decomposition of carbon emissions without residuals. Energy Policy, 30, pp. 727-736, 2002. Go to original source...
  15. GOMES, J.F.P.: Carbon Dioxide Capture and Sequestration: An Integrated Overview of Available Technologies, Nova Science Publishers: New York, 2013.
  16. Rozhodnutí o integrovaném povolení. Ministerstvo životního prostředí ČR. http://www.mzp.cz/ippc/ippc4.nsf/$pid/MZPJPGV5OMJO (accessed Sep 18, 2016).
  17. BUHRE, B.J.P., ELLIOTT, L.K., SHENG, C.D., GUPTA, R.P., WALL, T.F.: Oxy-fuel combustion techno­ logy for coal-fired power generation. Progress in Energy and Combustion Science, 31(4), pp. 283-307, 2005. Go to original source...
  18. LUIS, P., VAN GERVEN, T., VAN DER BRUGGEN, B.: Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 38 (3), pp. 419-448, 2012. Go to original source...
  19. ROCHELLE, G.T.: Amine Scrubbing for CO2 Capture. Science, 325 (5948), pp. 1652-1654, 2009. Go to original source...
  20. RAO, A.B., RUBIN, E.S.: A Technical, Economic, and Environmental Assessment ofAmine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol., 36 (20), pp. 4467-4475, 2002. Go to original source...
  21. PUXTY, G., ROWLAND, R., ALLPORT, A., YANG, Q., BOWN, M., BURNS, R., MAEDER, M., ATTALLA, M.: Carbon Dioxide Postcombustion Capture: A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines. Environ. Sci. Technol., 43 (16), pp. 6427-6433, 2009. Go to original source...
  22. ABU-ZAHRA, M., R., M., ABBAS, Z., SINGH, P., FERON, P.: Carbon Dioxide Post-Combustion Capture: Solvent Technologies Overview, Status and Future Directions, in: Materials and processes for energy: communicating current research and technological developments, Formatex Research Center: Newcastle, 2013.
  23. PADUREAN, A., CORMOS, C.C., AGACHI, P.S., Precombustion carbon dioxide capture by gas-liquid absorption for Integrated Gasification Combined Cycle power plants. International Journal of Greenhouse Gas Control, 7, pp. 1-11, 2012. Go to original source...
  24. PENNLINE, H.W., LUEBKE, D.R., JONES, K.L., MYERS, C.R. MORSI, B.I., HEINTZ, Y.J., ILCONICH, J.B.: Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology, 89 (9), pp. 897-907, 2008. Go to original source...
  25. SPIGARELLI, B.P., KAWATRA, S.K.: Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 1, pp. 69-87, 2013. Go to original source...
  26. Kemper County IGCC Fact Sheet: Carbon Dioxide Capture and Storage Project. Carbon Capture and Sequestration Technologies program at MIT. http://sequestration.mit.edu/tools/projects/kemper.html (accessed Feb 10, 2017).
  27. XIAO, P., ZHANG, J., WEBLEY, P. et al.: Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption, 14 (4), pp. 575­ 582, 2008. Go to original source...
  28. NTIAMOAH, A., LING, J., XIAO, P., WEBLEY, P.A., ZHAI, Y.: CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration. Ind. Eng. Chem. Res., 55 (3), pp. 703-713, 2016. Go to original source...
  29. GRANDE, C.A,; RODRIGUES, A.E.: Electric Swing Adsorption for CO2 removal from flue gases. International Journal of Greenhouse Gas Control, 2 (2), pp. 194-202, 2008. Go to original source...
  30. GRANDE, C.A., RIBEIRO, R.P.L., OLIVEIRA, E.L.G., RODRIGUES, A.E.: Electric swing adsorption as emerging CO2 capture technique. Energy Procedia, 1 (1), pp. 1219-1225, 2009. Go to original source...
  31. BLAMEY, J., ANTHONY, E.J., WANG, J., FENNELL, P.S.: The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 36 (2), pp. 260-279, 2010. Go to original source...
  32. KREMER, J., GALLOY, A., STROHLE, J., EPPLE, B., Continuous CO2 Capture in a 1-MWth Carbonate Looping Pilot Plant. Chemical Engineering & Technology, 36 (9), pp. 1518- 1524, 2013. Go to original source...
  33. STROHLE, J., JUNK, M., KREMER, J., GALLOY, A., EPPLE, B.: Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel, 127, pp. 13-22, 2014. Go to original source...
  34. HAWTHORNE, C., DIETER, H., BIDWE, A., SCHUSTER, A., SCHEFFKNECHT, G., UNTERBERGER, S., KÄSS, M.: CO2 capture with CaO in a 200 kWth dual fluidized bed pilot plant. Energy Procedia, 4, pp. 441­ 448, 2011. Go to original source...
  35. ARIAS, B., DIEGO, M.E., ABANADES, J.C., LORENZO,M.,DIAZ,L.,MARTÍNEZ,D.,ALVAREZ, J., SÁNCHEZ-BIEZMA, A.: Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. International Journal of Greenhouse Gas Control, 18, pp. 237-245, 2013. Go to original source...
  36. BARKER, R.: The reversibility of the Reaction CaCO3=CaO+CO2. Journal of Applied Chemistry and Biotechnology, 23, pp. 733-743, 1973. Go to original source...
  37. ALVAREZ, D., ABANADES, J.C.: Pore-Size and Shape Effects on the Recarbonation Performance of Calcium Oxide Submitted to Repeated Calcination/Recarbonation Cycles. Energy Fuels, 19 (1), pp. 270-278, 2005. Go to original source...
  38. GUPTA, H., FAN, L.S., Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas. Ind. Eng. Chem. Res., 41 (16), pp. 4035-4042, 2002. Go to original source...
  39. LIU, W., FENG, B., WU, Y., WANG, G., BARRY, J., DA COSTA, J.C.: Synthesis of sintering-resistant sorbents for CO2 capture. Environ. Sci. Technol., 44(8), pp. 3093-3097, 2010. Go to original source...
  40. CHEN, H., ZHANG, P., DUAN, Y., ZHAO, C.: Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process. Applied Energy, 162, pp. 390-400, 2016. Go to original source...
  41. MARTAVALTZI, C.S., PAMPAKA, E.P., KORKAKAKI, E.S., LEMONIDOU, A.A.: Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33. Energy Fuel, 24, pp. 2589-2595, 2010. Go to original source...
  42. LI, Z., CAI, N., HUANG, Y., HAN, H.: Synthesis, Experimental Studies, and Analysis of a New CalciumBased Carbon Dioxide Absorbent. Energy Fuels, 19 (4), pp. 1447-1452, 2005. Go to original source...
  43. REDDY, E.P., SMIRNIOTIS, P.G.: High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports. J. Phys. Chem. B, 108, pp. 7794-7800, 2004. Go to original source...
  44. MANOVIC, V., ANTHONY, E.J.: CaO-Based Pellets Supported by Calcium Aluminate Cements for HighTemperature CO2 Capture. Environ. Sci. Technol., 43, pp. 7117-7122, 2009. Go to original source...
  45. LI, L., KING, D.L., NIE, Z., LI, X.S., HOWARD, C., MgAl2O4 Spinel-Stabilized Calcium Oxide Absorbents with Improved Durability for High-Temperature CO2 Capture. Energy Fuels, 24, pp. 3698-3703, 2010. Go to original source...
  46. LU, H., REDDY, E.P., SMIRNIOTIS, P.G.: Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Ind. Eng. Chem. Res., 45, pp. 3944-3949, 2006. Go to original source...
  47. CIAHOTNÝ, K., STAF, M., HLINČÍK, T., VRBOVÁ, V., JÍLKOVÁ, L., RANDÁKOVÁ, S.: Removing carbon dioxide from flue gas using high temperature carbonate looping. Paliva, 7 (3), pp. 84-90, 2015. Go to original source...
  48. STAF, M., VRBOVÁ, V., JÍLKOVÁ, L., MIKLOVÁ, B., Regenerace sorpční kapacity vápenců pro záchyt CO2 zaváděním vodní páry. Paliva, 8 (2), pp. 67-77, 2016. Go to original source...
  49. MANOVIC, V., ANTHONY, E.J.: Steamreactivation of spent CaO-based sorbent for multiple CO2 capture cycles. Environ. Sci. Technol., 41, pp. 1420-1425, 2007. Go to original source...
  50. Vyhláška č. 415/2012 Sb. o přípustné úrovni znečišťování a jejím zjišťování a o provedení některých dalších ustano­ vení zákona o ochraně ovzduší.
  51. VEJVODA J., BURYAN P., CHALUPA P.: Objasnění příčin překračování emisního limitu pro oxid siřičitý na kotlích K4 a K5 o výkonu 356 t.h-1, Vysoká škola chemicko-technologická v Praze: Praha, 2004.
  52. FENNELL, P. (ED.), ANTHONY, B. (ED.): Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, Elsevier: Cambridge, 2015. Go to original source...
  53. TAYLOR, H., F.: W. Cement Chemistry, Thomas Telford: London, 1997.
  54. STAF, M., CIAHOTNÝ, K., KRTKOVÁ, E.: Perspektivy aplikace karbonátové smyčky v průmyslu a energetice České republiky. Paliva, 8 (1), pp. 7-15, 2016. Go to original source...
  55. STAF, M., KRTKOVÁ, E.: Posuzování energetických zařízení z hlediska aplikovatelnosti karbonátové smyčky. Paliva, 8 (3), pp. 90-100, 2016. Republic. Czech Hydrometeorological Institute. http://portal.chmi.cz/files/portal/docs/uoco/oez/nis/NIR/CZE_NIR-2015-2013_final_UNFCCC_final.pdf (accessed Aug 10, 2016). Go to original source...
  56. Integrovaný registr znečišťování. Česká informační agen­ tura životního prostředí. http://portal.ce-nia.CZ/IRZ/unikyPrenosy.jsp (accessed Aug 10, 2016).
  57. Ministerstvo průmyslu a obchodu České republiky. Státní energetická koncepce České republiky: Praha, 2014.
  58. Ministerstvo životního prostředí. IPPC - Integrovaná pre­ vence a omezování znečištění. http://www.mzp.cz/ippc/ippc4.nsf/search.xsp (accessed Aug 12, 2016).
  59. GÔTZ, M., LEFEBVRE, J., MÔRS, F., KOCH, A.M., GRAF, F., BAJOHR, S., REIMERT, R., KOLB, T.,: Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, pp. 1371-1390, 2016. Go to original source...