Zpravodaj Hnědé uhlí 2020, 60(1):36-43

Pyrolýza a přímé zkapalňování uhlí, vliv přídavků malténů na hydrokrakování vakuového plynového oleje

Dr. José Miguel Hidalgo Herrador, Ing. Jakub Fratczak, Ing. Aleš Vráblík, Dr. José Luis Gómez de la Fuente, Ing. Lukáš Anděl, Ing. Petr Svoboda, CSc., Jaroslav Kusý, RNDr. Ing. Josef Valeš

Malténová frakce z pyrolýzního oleje z hnědého uhlí nebo produkt přímého zkapalňování uhlí s bodem varu nad 220 °C byly smíseny s vakuovým plynovým olejem pro následné hydrokrakování. Cílem práce bylo zjistit, jakým způsobem ovlivní přídavek produktů z uhlí do vakuového plynového oleje vlastnosti finálních produktů (ve srovnání s čistým vakuovým plynovým olejem). Byl použit katalyzátor na bázi nikl-wolframu na siliko-alumině. Testy byly provedeny v laboratorní jednotce (rychlý screening) a na kontinuální pilotní jednotce. Při testech na laboratorní jednotce byly produkty analyzovány simulovanou destilací. Při pilotních testech byly plynné a kapalné produkty analyzovány simulovanou destilací, plynovou chromatografií GC-FID/TCD a GC-MS. Přídavek produktů z uhlí proces hydrokrakování výrazně neovlivnil.

Klíčová slova: ropa, uhlí, zkapalňování, dehet, vakuový plynový olej, koprocesing

Pyrolysis and direct coal liquefaction - maltenes addition effect on the vacuum gas oil hydrocracking

The maltenes fraction of coal tar pyrolysis or direct coal liquefaction product with a boiling range higher than 220 °C was mixed with vacuum gas oil for hydrocracking. The aim of the work was to study how an addition of coal derived compounds addition to vacuum gas oil affects the final product characteristics (comparing the tests using pure vacuum gas oil). Nickel tungsten supported on silico-alumina catalysts were used. Tests were performed in bench-scale (fast screening) and pilot-scale continuous flow reactors. For the fast screening, the feedstock and liquid products were analysed by simulated distillation. For longer-term tests, gases and liquids were analysed by simulated distillation, GC-FID/TCD, and GC/MS. The addition of coal-derived liquids did not affect the overall hydrocracking process.

Keywords: crude oil, coal, liquefaction, tar, vacuum gas oil, co-processing

Zveřejněno: 1. březen 2020  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Herrador, J.M.H., Fratczak, J., Vráblík, A., de la Fuente, J.L.G., Anděl, L., Svoboda, P., Kusý, J., & Valeš, J. (2020). Pyrolýza a přímé zkapalňování uhlí, vliv přídavků malténů na hydrokrakování vakuového plynového oleje. Zpravodaj Hnědé uhlí60(1), 36-43
Stáhnout citaci

Reference

  1. ROBINSON, K.K.: Reaction engineering of direct coal liquefaction. Energies, 2, pp. 976 1006, 2009. Přejít k původnímu zdroji...
  2. LARSON, E.D., REN, T.: Synthetic fuel production by indirect coal liquefaction. Energy for Sustainable Development, 7(4), pp. 79-102, 2003. Přejít k původnímu zdroji...
  3. FRATCZAK, J., HIDALGO HERRADOR, J.M., LEDERER J., STEVENS L., UGUNA C., SNAPE C., GÓMEZ DE LA FUENTE, J.L., ANDĚL L., SVOBODA, P., PINTO F.: Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel, 234, pp. 364-370, 2018. Přejít k původnímu zdroji...
  4. DIK, P.P., DANILOVA, I.G., GOLUBEV, I.S., KAZAKOV, M.O., NADEINA, K.A., BUDUKVA, S.V., PEREYMA, V.Y., KLIMOV, O.V., PROSVIRIN I.P., GERASIMOV E.Y., BOK T.O., DOBRYAKOVA I.V., KNYAZEVA E.E., IVANOVA I.I., NOSKOV A.S., Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties. Fuel, 237, pp. 178-190, 2019. Přejít k původnímu zdroji...
  5. DUFRESNE, P., BIGEARD, P.H., BILLON, A.: New developments in hydrocracking: low pressure high-conversion hydrocracking. Catalysis Today, 1(4), pp. 367­ 384, 1987. Přejít k původnímu zdroji...
  6. TAILLEUR, R.G.: Hydrocracking catalyst to produce high quality Diesel fraction. Studies in Surface Science and Catalysis, 143, pp. 321-329, 2000. Přejít k původnímu zdroji...
  7. PENG, C., DU, Y., FENG, X., HU Y., FRONT X.F.: Research and development of hydrocracking catalysts and technologies in China. Frontiers of Chemical Science and Engineering, 12(4), pp. 867-877, 2018. Přejít k původnímu zdroji...
  8. HALMENSCHLAGER C.M., BRAR M., APAN I.T., DE KLERK, A.: Hydrocracking vacuum gas oil with wax. Catalysis Today, 2019, ISSN 0920-5861 (article in press). https://doi.org/10.1016Zj.cattod.2019.07.011.
  9. BEZERGIANNI S., DIMITRIADIS A., KIKHTYANIN O. & KUBIČKA D.: Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, 68, pp. 29-64, 2018. Přejít k původnímu zdroji...
  10. AL-SABAWI M. & CHEN J.W.: Hydroprocessing of biomass derived oils and their blends with petroleum feedstocks: a review. Energy & Fuels, 26, pp. 5373-99, 2012. Přejít k původnímu zdroji...
  11. MELERO J.A., IGLESIAS J., GARCIA A.: Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environmental Science, 5, pp. 7393-420, 2012. Přejít k původnímu zdroji...
  12. The conversion of coal into liquid hydrocarbon distillates by hydrocracking. Report on the European Coal and Steel Community (ECSC) contract 7220-EC/115 (1979).
  13. JÍLKOVÁ L., CIAHOTNÝ K., KUSÝ J., ANDĚL L.: Co-pyrolysis of brown coal and biomass mixtures with subsequent modification of volatile products. Zpravodaj hnědé uhlí, 4, pp. 1213-1660, 2016.
  14. KUSÝ J., ANDĚL L., CIAHOTNÝ K., ŠAFÁŘOVÁ M.: Vývoj a testování poloprovozní koksovací jednotky. Paliva, 3, pp. 138-143, 2011. Přejít k původnímu zdroji...
  15. ŠAFÁŘOVÁ, M., KUSÝ, J. & ANDĚL, L.: Pyrolysis of brown coal under different process conditions. Fuel, 84, pp. 2005. Přejít k původnímu zdroji...