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Vyuziti statistickych metod v praxi

Ausnutzung der statistischen Methoden in
Praxis

Die Datei von fiinf vorgelegten Beitrdgen
schildert die Anwendungsmoglichkeiten von
ausgewdhlten statistischen Methoden in
Praxis. Auf den angefiihrten Beispielen sind
die statistische Bewertung eines Komplexes
von eindimensionalen Dateien, Bildung von
linearen und  unlinearen  Modellen,
Ausnutzung Streuungsanalysetechnik und
mehrdimensionale  statistische ~ Analyse
dargestellt.

Durch die Methode von eindimensionalen
Dateien ist das statistische Testen des
Ergebniskomplexes der Festigkeits-
bestimmung im reinen Gesteinedruck
durchgefiihrt, durch die Bildung von linearen
Regressionsmodell fiir eine einheitliche
Klassifikation der Sedimente (JKS) wurde
die Beziehung zwischen den Ergebnissen von
Laborproben erklirt, die die Gesteine-
beschaffenheiten darstellen, und dem Index
JKS. Die Demonstration der Bildung von
unlinearen regressiven Modellen wurde
einmal auf dem Modell fur Berechnung des
Filtrationskoeffizienten ~durchgefuihrt, der
aus physikalischen Erwédgungen
ausgegangen ist, und einmal wurden die
Abhéngigkeit zwischen dem Beryliumgehalt
in Kohle und der Asche in Kohle durch die
Bildung eines empirischen Modells erfasst.
Durch die Streuungsanalyse wurde der
EinfluB der Temperatur auf langliche
Anderung durch Brennen von Ziegelrohstoff
untersucht und weiter wurde das Testen des
Einflusses im Labor und der Methode fiir die
Bestimmung des Schwefelgehaltes in Kohle
durchgefiihrt. Als ein praktisches Beispiel
der  Ausnutzung der  mehrrdumigen
statistischen Analyse ist dem Leser die
Bewertung von keramischen Rohstoffen
vorgelegt.

Utilization of statistical methods in practice
The set of five submitted articles shows the

possibilities of technically directed research
workers to apply the selected statistical
methods in practice. At solved examples it is
executed the statistical evaluation of the set
of one-dimensional data, formation of linear

and non-linear models, further the utilization
of technique of scattering analysis and more-
dimensional statistical analyses.

By the method of one-dimensional data it is
executed the statistical testing of the result
set, the statement of unconfined compression
strength of rocks, formation of linear
regression model for uniform sediment
classification (JKS) it was expressed the
relation between the results of laboratory
tests which represent the rock properties,
and by JKS index. The demonstration of the
formation of non-linear regression models
was executed partly on the model for
calculation of filtration coefficient which
came out of the physical considerations, and
partly it was determined the dependence
between the beryllium contents in coal and
ash in coal by the formation of empirical
model. By the scattering analysis it was
tested the temperature influence to the length
change by the burning of brick raw
materials and further it was executed the
testing of laboratory influence and method
for determination of sulphur contents in
coal. It is submitted the evaluation of
ceramic raw materials to reader as a
practical example of utilization of more-
dimensional statistical analysis.

Hcrnonb3oBaHUE CTATUCTUYECKUX METO-
JOB Ha MPaKTHKE

Cobpanue ATy NpeaTaBISEMbIX CTAaTel
MOKa3bIBa€T BO3MOXHOCTH TEXHHYECKH
OPHUHTHPOBAHHBIX  HAYYHO-HCCIIEIOBA-
TEILCKMX pabOTHMKOB IO NpaKkTH-
YECKOMY  IPMMEHEHHIO  BBIOpaHHBIX
CTaTUCTHYECKUX MeTomoB. Ha mpumepax
pElIeHHA IPOBOJUTCS CTaTHCTHYECKas
OLICHKa COBOKYITHOCTH OIHOPa3MEpPHBIX
JaHHbIX,  CO3JaHHE  JIMHEHHBIX M
HEJTUHEHHBIX MOJIEIIEH, JajbLue
UCTIONb30BAHUE  TEXHHMKH aHaM3a
paccesHus u MHOIOpa3MepHOro
CTaTHUCTHYECKOrO aHaM3A.

ITpy moMowmm Meroma OIHOpPa3MEPHBIX
JaHHBIX OCYIIECTBJIEHO CTATHCTHYECKOE
UCTIBITAHWE COBOKYMHOCTH PE3YILTATOB
YCTaHOBIIEHHS [IPOYHOCTH TIOPOX IIpH
IIPOCTOM CXAaTHUH, CO3MaHUEM IMHEHHOM
perpeccuBHOM  MoIenmM i EauHOM
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xraccupukannn  cemumentos  /EKC/
6bUTO BBIPAXKEHO COOTHOLUECHHE MEXIY
pe3ybTaTaMyd  J1aGOPaTOPHBIX  HCIIBbI-
TAaHWM, PpENPE3CHTUPYIOMIMX CBOHCTBA
1opox, 151 HHIEKCOM EKC.
JleMoHCTpUpOBaHHE obpa3oBaHus
HEIMHEHHBIX  PETPECCHBHBIX  MOJIENIEH
OpOBOMMIOCH C OJHOH CTOPOHbI Ha
MO/JIeIH pacyera koadbunreHTa
GWIbTpaLMK, KOTOPOBIA HCXOMWI H3
dusrdecKuxX CcoOOpaxeHuH, ¢ Ipyrou
CTOPOHKT YCTaHABJIMBAJIaCh 3aBHCHMOCTD
MEX]Ty ColepXKaHHeM OepwiLIHs B yIIe U
307108 3a CYeT CO3JaHMs SMITMPHYECKOU
mogemi. [Tomolpio aHaM3a paccesHus
UCIBITHIBATIOCh BIMSIHME TEMIIEPATYpPhI
Ha M3MCHEHHE [UIMHBI IIPH CHKHUIaHHUIO

KUPIIUYHOTO ChIpbA, a  Takke
NPOBOMIIOCH ~ MCIBITAHHE  BIIASHHS
nabopaTopuH U MeTo/a Ha

YCTAHOBJICHUE COMEPXKaHMs CEPbI B YIJIC.
B KxadvecTBe IpaKTHYecKoro obpasua
NpUMEHEHMA MHOTOPa3MEpPHOro
CTATHUCTHYECCKOrO  aHalM3a  YUTaTeNro
npelaraeTcs OLEHKa KEpaMHYecKoro
CBIPBSL.

VyuZiti statistickych metod v praxi
Soubor péti piedloZenych ¢lanki ukazuje
mozZnosti technicky zaméfenych

Obsah

Uvod

) -

IL. Linearni regresni modely
III.  Nelinearni regresni modely
IV.  Analyza rozptylu

V. Vicerozmérna statisticka analyza

UVOoD

vyzkumnych pracovniki aplikovat vybrané
statistické metody v praxi. Na feSenych
piikladech  je  provedeno  statistické
hodnoceni souboru jednorozmémych dat,
tvorba linearnich a nelinedrmich modeld,
dale vyuZiti techniky analyzy rozptylu
a vicerozmé&meé statistické analyzy.

Metodou jednorozmémych dat je provedeno
statistické testovani souboru vysledki
stanoveni pevnosti v prostém tlaku hornin,
tvorbou lineamiho regresniho modelu pro
jednotnou klasifikaci sedimentit (JKS) byl
vyjadien vztah mezi vysledky laboratornich
zkousek, které reprezentuji vlastnosti hornin,
a indexem JKS. Demonstrace tvorby
nelinearnich  regresnich  modeld  byla
provedena jednak na modelu pro vypocet
koeficientu  filtrace,  ktery  vychazel
z fyzikalnich uvah, a jednak byla zjiSt'ovana
zavislost mezi obsahem beryllia v uhli
apopelem vuhli tvorbou empirického
modelu. Analyzou rozptylu byl testovan vliv
teploty na délkovou zménu palenim
cihlafské suroviny a dale bylo provedeno
testovani vlivu laboratofe a metody na
stanoveni obsahu siry v uhli. Jako prakticka
ukizka vyuZiti vicerozm&mé  statistické
analyzy je c¢tenari pfedloZeno hodnoceni
keramickych surovin.

Qtatictické 7nracovani iednorozmérnych dat

Aplikace statistickych metod do klasickych i novych technickych obort patfi
spiSe mezi mladé sméry v&dnich disciplin. Vede ke vzniku oborl jako chemometrie,
biometrie, psychometrie, ekonometrie apod. Statistickd analyza nabyva stile vétsiho
vyznamu a stava se jednim ze zakladnich pfistupl v fadé pfirodovédnych, technickych

a socialnich véd.

18



Zpravodaj Hnédé uhli I11/98

Piedlozeny soubor péti ¢lanka se zabyva vyuzitim statistickych metod pomoci
pocitalového software pii zhodnoceni vysledkii laboratornich zkouSek hornin a uhli
severo&eské a sokolovské panve.

Clanky jsou rozd&leny na dv& &asti. V prvni asti jsou jen velmi struén& popsény
zékladni statistické postupy, protoZe cilem nebylo ukédzat Ctenafim naro€nost
statistického testovani, ale moZnosti jeho pouziti v praxi. V druhé ¢asti ¢lanki je pak
provedeno feSeni vybranych prikladd.

Problematika jednorozmérnych dat je diskutovana v prvnim clanku. Cilem
analyzy jednorozmérnych dat je ur€it povahu dat z hlediska symetrie, homogenity
a stability, odhadnout jak je analyzovat, zda lze datlim véfit a podobn€. Na zakladé této
diagnostiky je teprve mozné rozhodnout o metodé vypoctu odhadu stfedni hodnoty,
intervalu spolehlivosti, smérodatné odchylky. V feSeném piikladu prvniho c¢lanku
testovani souboru vysledkd stanoveni pevnosti v prostém tlaku hornin je diskutovano,
jakych chyb se Ize dopustit, neni-li dodrzen uvedeny postup statistické analyzy.

V druhém ¢lanku je demonstrovan postup tvorby linedrniho regresniho
modelu. Vytvotenim linearniho regresniho modelu je objasfiovan vztah mezi vystupni,
zavisle proménnou veliinou a vstupnimi nezavisle proménnymi, veliCinami v fadé
technickych obort. ReSeny priklad z praxe se zabyva hledanim vztahu mezi vysledky
laboratornich zkousek hornin a indexem jednotné klasifikace zemin JKS.

Treti &ldnek se zabyva tvorbou nelinedrnich regresnich modelii, pomoci nichZ
Ize prakticky fesit fadu technickych a pfirodovédnych uloh, napt. konstrukei kalibra¢nich
modell, vyjadfeni zékladnich fyzikalné-chemickych zéakonitosti, tvorbu empirickych
modeld apod. V feSenych piikladech je pfedloZen Ctenafi jednak nelinearni regresni
model, vychézejici z fyzikéalnich Uvah, a jednak model empiricky, ktery objasiiuje vztah
mezi obsahem popela v uhli a obsahem beryllia v popelu uhli.

Ctvrty ¢&ldnek popisuje moznosti vyuziti analyzy rozptylu v praxi Analyza
rozptylu, tzv. ANOVA, je technika, kterd umoZziuje posouzeni vyznamnosti jednotlivych
zdrojl variability v datech. Pomoci ANOVY lze napf. uréit vliv typu pfistroje, lidského
faktoru a obsluhy na vysledek méreni. Tato technika je dale vhodnd pii zpracovani
mezilaboratornich experimentd a urfeni vyznamnosti rozdili mezi laboratofemi na
vysledek analyz apod. Jako ukazka vyuZiti techniky ANOVY je Ctenafi pfedloZeno
posouzeni vlivu teploty na délkovou zménu palenim cihlafské suroviny a testovani vlivu
laboratofe a metody na stanoveni obsahu siry v uhli.

V pdtém clinku jsou diskutovany nékteré postupy vicerozmérné statistické
analyzy. V praxi se vicerozmémé statistické metody pouZivaji pro feSeni problému
v situaci, kdy u souboru objekti je sledovana vice nez jedna proménna. S touto situaci se
lze dnes setkat prakticky ve vSech védnich oborech, pfirodnimi a technickymi védami
poéinaje a spoleCenskymi védami konCe. Jako prakticka ukazka vyuziti vicerozmérné
statistické analyzy je uvedeno hodnoceni keramickych surovin.
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L STATISTICKE ZPRACOVANI JEDNOROZMERNYCH DAT

1. DULEZITE POIMY

Data. Data je soubor namé&fenych &i jinak ziskanych hodnot, zatizenych chybou.
Ze statistického hlediska jsou data povaZzovéna za realizaci ndhodné veliCiny, popf.
nahodny vybér. Data se dale rozliSuji na jednorozmérnd a vicerozmérnd (jednorozmeérny
a vicerozmérny vybér). Jednorozmérna data jsou napf. opakované méfeni jedné veliCiny
(pevnosti v tlaku, vlhkosti, zisku apod.) vrizném Case nebo na riznych mistech.
U vicerozmérnych vybéra se provadi opakovana méfeni n€kolika veli€in soucasné.

Néhodné velidina, néhodné rozdélent, ndhodny vybér. Veliina, ktera mize
nabyvat jakoukoliv hodnotu z uréité mnoZziny hodnot a s niz je spojeno n€jaké rozdeleni
pravddpodobnosti, se nazyva ndhodnd veli¢ina. Nahodna veli¢ina, kterd miZe nabyvat
pouze izolované hodnoty, se nazyva diskrétni. Nahodna veliCina, kterd miiZe nabyvat
jakékoliv hodnoty z kone&ného nebo nekoneéného intervalu, se nazyva spojitd. Existuje
nekonedné mnoZstvi viech moznych hodnot, které 1ze naméfit. Tyto vSechny hodnoty je
mozné chéapat jako ndhodné rozdéleni nebo statisticky model nadhodné veliCiny. KaZzdé
néhodné rozdéleni je definovano napf. hustotou pravdépodobnosti, distribulni funkci
nebo kvantilovou funkci. Tyto tfi funkce jsou co do informace o rozd€leni ekvivalentni,
jedna se da spocitat z druhé. Obecné muze mit takové rozd€leni slozity tvar, k jehoZz
popisu je tfeba velké mnoZstvi parametrii. V praxi je k dispozici jen omezeny pocCet
moznych hodnot, které nam vybrala ndhoda, tedy jde o ndhodny vybér. ProtoZe neni
znamo jak spravedlivé jsou tyto hodnoty ,,vybrany“, provadi se rekonstrukce plivodniho
rozdéleni, obvykle pomoci odhadd parametri rozdéleni jako jsou primér a smérodatna
odchylka normalniho rozdé€leni apod.

Distribuéni funkce (kumulativni hustota) F(x) je pravd€podobnost, ze nahodna
velidina z daného rozdéleni bude mensi nez x. F je zdola omezeno nulou, shora
jednitkou. Na ose x je pravdépodobnost, na ose y je kvantil daného rozdéleni.

Kvantil je hodnota, odpovidajici zvolené pravdépodobnosti na distribu¢ni funkci.
Kvantil je v podstaté kazdd moZni hodnota méfené veliCiny, k niZ lze pfifadit jisté
nrocentn 100 (resn  nravddnadohnast o) Mhivi se pak o a - kvantilu neboli

o a-procentnim kvantilu.

Hustota pravdépodobnosti f(x) je derivace distribu¢ni funkce. Na prvni pohled
dava lepsi predstavu o rozdéleni dat nez distribuéni funkce. Je zni obvykle patrna
nesymetrie (seSikmeni) rozdéleni nebo pfitomnost vice maxim (nehomogenita). Jeji
hodnota na ose y viak nema vyznam pravdépodobnosti. V intervalu kolem maxima se
bude vyskytovat vice naméfenych hodnot, nez ve stejném intervalu jinde.

Statistika je jednak oznaeni matematické discipliny, jednak hodnota ziskana
jednoznaéné znahodnych experimentalnich dat neboli funkce nahodného vybéru.
Statistikou je aritmeticky primér, smérodatna odchylka, median, nejmensi a nejvetsi
namé&fena hodnota, smérnice regresni piimky, ale také korelaéni matice.

Normdlni rozdéleni (neboli Gaussovo) je nejastéji definovano svou hustotou
pravdépodobnosti. M4 dva parametry — stfedni hodnotu a rozptyl. Odmocnina z rozptylu
se nazyva smérodatnd odchylka. Normalni rozdéleni je symetrické, data s normalnim
rozdélenim mohou nabyvat hodnot od -0 do +e0. Jiz z této véty vyplyva, Ze pouZivat
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modelu normalniho rozdéleni pro realna data je vétSinou teoreticky a Zasto i prakticky
nespravné. Redlna data nemohou nabyvat libovolné hodnoty. Hmotnost, délka aj.
veli€iny nemohou byt zéporné, koncentrace je omezena na interval 0-100%, podobna
omezeni ma veétSina piirodnich, technologickych i ekonomickych veli¢in. Presto se
piedpoklad o normalit€ dat pouZiva. Za prvé proto, Ze matematické vlastnosti Gaussova
rozd€leni dovoluji snadné odvozeni jeho dilezitych vlastnosti a vypo&etnich metod (napt.
testy, metoda nejmensich Ctvercl, vlastnosti odhadl). Pro jind rozdéleni jsou takové
vypocty slozit€jsi a nékdy i nemozné. Za druhé se n€kdy data skutedn& chovaji tak, Ze
jejich rozdil od normality je zanedbatelny.

Statisticky test ma dat jednoznaénou odpovéd’ na otazku na zakladé namétenych
dat. Ma obvykle formu hypotézy H,, kterou test zamitne nebo pifjme. Zamitnuti
hypotézy Ho znamena piijeti takzvané alternativni hypotézy Ha , ktera je negaci H.
Vzhledem k ndhodné povaze dat nemdze byt vysledek testu stoprocentni. Kazdy test se
mtze zmylit. Proto je u vétSiny testd nutné se rozhodnout jaké riziko omylu chceme
pripustit. Timto rizikem je hladina vyznamnosti, obvykle oznalovana jako a. Volba
hladiny vyznamnosti je v kompetenci uZivatele. Obvykle se uZiva hodnota o = 0.05, tedy
5%. Pouziti jiné hodnoty by se mélo zdivodnit a pak se musi dodrZovat vzdy.

2. STATISTICKE ZPRACOVANI JEDNOROZMERNYCH DAT

2.1  Pruzkumova analyza dat

Statistickému  zpracovéani jednorozmémych vyb&€ri predchazi prizkumovd
(exploratorni) analyza. Jejim ucelem je odhalit zvlaStnosti dat a ovéfit ptedpoklady pro
nasledné statistické zpracovani. Pti zpracovani jednorozmérnych vybért, které pochazeji
ze soubord o ne zcela zndmém rozd€leni, je sledovan pouze jeden znak, napf.
mechanicko-fyzikalni vlastnost, chemicky nebo mineralogicky komponent hornin, uhli
nebo parametr charakterizujici ur€ité vlastnosti materiald apod. Cilem statistického
zpracovani je z chovani vybéru usuzovat na chovéni celého souboru. Z riznych typt
vybéru se v praxi uplatiiuji napf. v laboratofi naméfené hodnoty, které jsou chapany jako
realizace jisté nahodné veliCiny. Reprezentativni ndhodny vybé&r je charakterizovan
nasledujicimi predpoklady, které tvori zaklad statistickych metod vyhodnoceni vysledkd
méTeni:

a) Jednotlivé prvky vybéru jsou vzajemné nezavislé.

b) Vybér je homogenni, tj. vSechny prvky vybéru pochézeji ze stejného rozdéleni
pravdépodobnosti s konstantnim rozptylem.

c) Predpoklada se, Ze jde o normalni rozdéleni.

d) VSechny prvky souboru maji stejnou pravdépodobnost, Ze budou zafazeny do
vybéru.

2.1.1 Graficka pruzkumova analyza

Ke komplexnimu posouzeni zvlastnosti statistického chovani dat se vyuzivaji
grafické metody: kvantilovy graf, rozptylovy graf, graf polosum, symetrie, $ikmosti
a Spiatosti, Q-Q graf, podminény Q-Q graf, graf hustoty pravdépodobnosti, krabicovy
graf's kvantily a kruhovy graf.

Kvantilovy graf umoziuje piehledné znazornit data a snadng&ji rozlisit tvar
rozdéleni, ktery mlze byt symetricky, se§ikmeny k vy38im nebo niZ$im hodnotdm. Dile
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lze identifikovat lokalni koncentrace dat, vybolujici data. Diagram rozptyleni
ptedstavuje jednorozmérnou projekci kvantilového grafu do osy x. Tento graf ukazuje na
lokalni koncentrace dat a indikuje i podeziela a vybocujici méfeni. Rozmitnuty diagram
rozptyleni predstavuje rovnéz projekei kvantilového grafu. Pro &asteCnou sumarizaci dat
lze vyuzit krabicového grafu, ktery umoziiuje znazornéni robustniho odhadu polohy
medianu, posouzeni symetrie v okoli kvantill, posouzeni symetrie u koncii rozdéleni
a identifikaci odlehlych dat. Obdobou krabicového grafu je vrubovy krabicovy graf,
ktery umozZiiuje i posouzeni variability medianu. Pro svoji jednoduchost a prehlednost se
uZivaji krabicové grafy predeviim k porovnani nékolika vybérii. Indikuji dobfe symetrii
rozd&leni a podeziela m&feni. Snadné ovéfeni symetrie umoZziuje graf polosum a graf
symetrie. Q-Q graf pro normalni rozd&leni je jednim z nejpouZivangjsich exploratornich
grafli pro hodnoceni normality.

Pii statistickém zpracovani se predpoklada, ze jde o nezavislé, stejné rozdelené
nahodné veliiny pochazejici z normaélniho rozdéleni. Rozsah vybéru postatuje k ur€eni
dostate&né presného odhadu parametrdi polohy a rozptyleni. Pokud ptedpoklady o datech
nejsou splnény, jejich analyza je znacné slozita. Ovéfeni viech pfedpokladi je mozné pfi
vyuziti metod priizkumové analyzy a interaktivniho pfistupu na osobnich pocitacich.

2.1.2 Ovéfeni zdkladnich pfedpokladii

Zéakladnim predpokladem kvalitnich méfeni je vzajemna nezavislost jednotlivych
vysledkii. Zavislost méfeni je obvykle zpisobena:

a) nestabilitou méficiho zafizeni nebo zménou stavu meficiho zafizeni

b) nekonstantnosti podminek mé&feni

c) zanedbanim faktord, které vyznamné& ovliviiuji vysledek méfeni, jako je objem

vzorkd, teplota, ne€istota chemikalii
d) nespravnym, nendhodnym vybérem vzorkl k méfeni

Pokud se uvedené faktory méni s &asem, projevi se vznikem Casové zéavislosti
mezi prvky vybéru, usporadanymi v Casovém sledu. V piipad€ skokovych zmén téchto
faktorti vznika heterogenni vybér. V obou pfipadech se objevi zvySeny rozptyl oproti
rozntyln homogenniho vyb&ru. Odhaleni zavislosti v datech vyZaduje obecné provéreni
celého procesu méfeni a sbéru dat.

K zékladnim predpokladim patii normalita vybérového rozd€leni, nebot’ je na ni
zalozena cela klasicka analyza dat, testovani vybocujicich méfeni a testy nezavislosti
prvkid vybéru. Existuji dva zékladni typy testd normality, smérové testy a omnibus-testy.
Testy jsou obecné méné citlivé na odchylky od normality nez vySe uvedené diagnostické
grafy a navic odchylka od normality miZe byt mnohdy zplsobena vybocujicimi
hodnotami.

Tam, kde se vyskytuje vyrazna nestejnomérnost méfenych vlastnosti vzorki, kde
se nahle mé&ni podminky experimenti a data obsahuji vyboCujici méfeni, dochazi
k nehomogenité namétenych dat. Pokud se vdatech vyskytuji odlehlé, vybocujici
hodnoty, Ize je bézn& identifikovat v grafech prizkumové analyzy. Vybocujici méfeni
silng zkresluji odhady parametrd, takZe mohou zcela znehodnotit dalsi statistickou
analyzu. Na zaklad& logické analyzy je tfeba nejdiive zvéZit, zda nejde o sesikmené
rozd&leni. Body, které se jevi vybo&ujici pro symetrické rozdéleni, mohou byt pro
sesikmena rozd&leni naopak pfijatelné. Pokud se jedna o vybocujici pozorovani, Ize
pouzit dvou moznosti. Prvni moZznost spociva ve vylou€eni vybolujicich hodnot z dalsi

22



Zpravodaj Hn&dé uhli 11/98

analyzy, coZ nemusi byt vzdy vhodné feSeni. Vybolujici méfeni mohou byt totiz
vysledkem Hdce se vyskytujicich jevii a jejich vylouenim pak miZze dojit k Gplné ztrate
informace. Druh4 moZnost spoéiva v pouZiti robustnich metod. Tento postup nemusi byt
ale vzdy korektni. Robustnost spoéiva v piiblizeni se k pfijatému modelu bez ohledu na
jeho platnost. Kterd méfeni vykazuji evidentni hrubé chyby jako je selhani pfistroje,
Spatny zapis dat apod. a kterd data jsou jen podeziela, by mél rozhodnout
experimentator. Evidentni hrubé chyby je vhodné z dalsi analyzy vyloucit, ale podeziela
méfeni je lépe ponechat. Robustnimi metodami se jejich vliv na odhady parametr

vyrazné oslabi.

2.2  Statistické zpracovani dat

Po predbéZné analyze namé&fenych dat nasleduje dalsi etapa statistické analyzy.
Pro vybéry malého rozsahu se vy<isluji charakteristiky pfimo, u vybéri vétsiho rozsahu
se data nejdiive &leni do tiid a pak se pracuje se skupinami. V praxi, napf. v chemické
discipling, neni soubor v§ech moznych naméfenych hodnot vétSinou znamy. Statisticka
analyza se provadi na zékladé jeho reprezentativniho vzorku, tzv. ndhodného vybéru.
Pro reprezentativni ndhodny vybér plati, Ze viechny prvky vybéru se chapou jako
nahodné velidiny, které se fidi stejnym zakonem rozdéleni, tj. vybér je homogenni
a hodnoty zahrnuté do vybéru jsou vybrany nezavisle na sob€.

Vybér je charakterizovan informaci o stfedni hodnot€ a rozptyleni kolem stfedni
hodnoty. Ur¢it stfedni hodnotu sledované veli¢iny je prvnim a zdanlivé jednoduchym
ikolem, ktery lze s namé&fenymi daty udélat. Aritmeticky primér je nejpouzivangjsim,
a vétsing lidi také jedingm znamym odhadem stfedni hodnoty néhodné veliCiny. Je to
soudet hodnot dé&leny jejich poétem. Malokdo si uv€domuje nedostatky takového
odhadu, které mohou vést aZ k jeho nepouzitelnosti. Aritmeticky prumér je totiZ
,spravnym“ odhadem jen tehdy maji-li data normélni rozdé€leni (Gaussovo). Lze tusit, Ze
tento pfedpoklad je Casto faleSny.

Dopliikem stfedni hodnoty a rozptyleni kolem stfedni hodnoty je pak informace
o tvaru vyb&rového rozdéleni. Statistické charakteristiky polohy, rozptyleni a tvaru
vyb&ru se nazyvaji vybérové charakteristiky. Z téchto charakteristik se pak usuzuje na
statistické charakteristiky zakladniho souboru.

Pouziti jednotlivych typG charakteristik je zavislé na rozdé€leni zékladniho
souboru, ze kterého vybér pochazi. Pokud plati pfedpoklady normality, nezavislosti
a homogenity, vy&isluji se zdkladni momentové charakteristiky. Jsou-li v datech
predpokladany i vybocujici hodnoty, uZzivaji se robustni odhady, zejména kvantilové.
Pokud bylo nalezeno jiné nez predpoklddané normélni rozd€leni, pouZivaji se
maximadlné vérohodné odhady.

Zakladni charakteristikou polohy je wybérovy pramér X, ktery je zaroved
maximalné vérohodnym odhadem stfedni hodnoty pro normalni rozdéleni. Zakladni
charakteristikou variability je vybérovy rozptyl s°, ktery je zaroveil nevychylenym
odhadem rozptylu pro normalni rozdéleni. Obé tyto charakteristiky se oznaluji jako
momentové a pouzivaji pro zakladni statisticky popis vyb&rli pochézejici z libovolného
rozdéleni.

Kvantilové a robustni charakteristiky jsou méné citlivé na vybocuyjici hodnoty
nez momentové. Patii sem piedevsim medidn, %5 Jde vidy o 50%ni kvantil, kdy
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polovina prvkd leZi pod a polovina prvkd nad hodnotou medianu. Median je maximalng
vérohodnym odhadem polohy u Laplaceova (oboustranného exponencialniho rozdéleni).
Pro normalni rozdéleni viak jiz neni median nejvhodnéjsi. Pro pfipad rovnomé&rného
rozdéleni je vydatnym odhadem polohy polosuma X, kdy soucet mmxmalmho
a maximalntho prvku ve vybéru je vydélen dvémi. Dale sem patfi mddus, X je
definovan jako lokalni maximum na hustoté pravd€podobnosti. Jednim
z nejefektivnéjsich a pfitom jednoduchych robustnich odhadd polohy je urezany priméer
X (9), ktery vyuziva linearni kombinace potadkovych statistik.

Ze statistického hlediska maji bodové odhady maly vyznam, protoZe nefikaji nic
o tom kde leZi skutedné hodnoty parametri. Vice informaci poskytuje intervalovy odhad,
ktery uréuje interval, v némz se bude se zadanou pravdépodobnosti nachéazet skute¢na
hodnota daného parametru. Neznamy parametr je tedy odhadovan nikoliv jednou, ale
dvéma &iselnymi hodnotami, které tvofi meze tzv. intervalu spolehlivosti (konfidencniho
intervalu). Interval spolehlivosti pokryje nezndmy odhadovany parametr daného
rozdéleni zakladniho souboru s pfedem zvolenou, dostate¢né velkou pravdépodobnosti
(1-ot), ktera se nazyva koeficient spolehlivosti (konfidencni koeficient, statistickd jistota).
Pro intervaly spolehlivosti plati, Ze:
a) Cim je rozsah vybéru v&tsi, tim je interval spolehlivosti uzsi.
b) Cim je odhad piesn&jsi a m& mensi rozptyl, tim je interval spolehlivosti uZsi.
¢) Cim je v&tsi statisticka jistota (1-ot), tim je interval spolehlivosti SirSi.

2.3  Matematicka transformace dat

Pokud se na zakladg analyzy dat zjisti, Ze rozdéleni vybéru dat se pfili§ odliSuje od
rozdéleni normalniho, vznikd problém, jak data vibec vyhodnotit. V fad€ pripadi lze
nalézt vhodnou transformaci, ktera vede ke stabilizaci rozptylu, zesymetri¢té€ni rozdéleni
a nékdy i knormalits. Vychazi z pfedstavy, Ze zpracovana data jsou nelinearni
transformaci normalné rozdélené nahodné veli¢iny x. Hledd se knim pak inverzni
transformace g(x). Nejcast&ji pouzivana transformaéni funkce se nazyvi Box-Coxova
transformace. Cilem Box-Coxovy transformace je nalézt takovou hodnotu, ktera zajisti
maximalni symetrii nebo lépe maximalni normalitu dat.

3. PRIKLAD STATISTICKEHO ZPRACOVANI SOUBORU JEDNORO-
ZMERNYCH DAT

3.1 Zadani:

U 26ti vzorkd hornin, které reprezentuji kvazihomogenni material a jejichZ stav
odpovidal podminkdm zkousky, bylo provedeno stanoveni pevnosti v prostém tlaku dle
CSN 72 1025 ,Laboratorni stanoveni smykové pevnosti zemin zkouSkou v prostém
tlaku“. U souboru vysledkl laboratornich zkou$ek je poZadovano urCeni bodovych
a intervalovych odhadd pevnosti v prostém tlaku. Vysledky jsou uvedeny v MPa.

3.2  Refeni:

U dat byla nejprve provedena pomoci statistického softwaru Adstat 2.0 spojita
exploratorni analyza a ovéfeni zakladnich pfedpokladl. Vstupni data a vstupni podminky
jsou pro viechny vypolty stejné, proto jsou uvedeny pouze u Ciselného vstupu
exploratorni analyzy.
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I. EXPLORATORNI ANALYZA

Ciselny vystup ze statistického software

V diselném vysledkovém vystupu statistického software jsou zékladni statistické
charakteristiky a parametry regresni pfimky pro zavislost charakteristiky Sikmosti na
Stverci kvantilu normovaného normalniho rozdéleni. Dale je zde tabulka kvantild od 5
do 95% a hodnoty dalsich vyznamnych kvantild. Kvantily se pouZivaji pti konstrukci
diagnostickych grafii.

Pro normélni rozdéleni je Sikmost g; = 0 a 3piatost g = 3. Tvarové parametry,

uvedené v &iselném vystupu exploratorni analyzy (3) klasické odhady, pro Sikmost
a Spicatost ukazuji na exponencialni rozdéleni souboru.

(1) VSTUPNI DATA A PODMINKY:

Pocet dat 26
Hladina vyznamnosti alfa 0.050
(2) VSTUPNI DATA:

1 1.7500E-01 8 9.4000E-01 15 1.6000E-01 | 22 | 2.3000E-01

1.1700E-01 9 3.7000E-01 16 | 2.9500E-01 | 23 1.8600E-01

1.8000E-01 | 10 | 3.3000E-01 17 | 1.4000E-01 | 24 [ 5.7000E-01

2.7100E+00 | 11 | 3.1000E-01 18 | 2.7000E-01 25 1.5500E-01

1.2700E+00 | 12 | 1.8000E-01 19 | 2.6000E-01 | 26 | 5.1200E-01

1.1500E+00 | 13 | 2.2000E-01 | 20 | 2.6000E-01

N | | R (W

1.2500E+00 | 14 | 1.9000E-01 | 21 1.7800E-01

(3) KLASICKE ODHADY PARAMETRU

Median 2.6000E-01 Primér 4.8492E-01
Rozptyl 3.2871E-01 Smérodatna odchylka 5.7333E-01
Spiatost 9.8557E+00 Sikmost 2.5807E+00
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(4) KVANTILY A PISMENOVE HODNOTY:

Kvantilové miry:

Procento Kvantil Procento Kvantil
5 1.4375E-01 10 1.5750E-01
15 1.7125E-01 20 1.7800E-01
25 1.8000E-01 30 1.8300E-01
35 1.8900E-01 40 2.2000E-01
45 2.3750E-01 50 2.6000E-01
55 2.6750E-01 60 2.9500E-01
65 3.1500E-01 70 3.5000E-01
i) 4.7650E-01 80 5.7000E-01
85 9.9250E-01 90 1.2000E+00
95 1.2650E+00
Pismenové hodnoty:
Kvantil Pismeno | Pravdépodobnost Spodni mez Horni mez
Sedecil D 0.0625 1.4844E-01 1.2587E+00
Oktil E 0.1250 1.6187E-01 1.1237E+00
Kvartil F 0.2500 1.8000E-01 4.7650E-01
Median M 0.5000 2.6000E-01 2.6000E-01
(5) KVANTILOVE MIRY:
Kvantil F (0.25) E (0.125) D(0.0625)
Rozsah 2.9650E-01 9.6187E-01 1.1103E+00
Polosuma 3.2825E-01 6.4281E-01 7.0359E-01
Délka koncti 0.0000E+00 1.1768E+00 1.3203E+00
Sikmost 1.3506E-01 -1.6448E-01 -9.2629E-02
PseudoSigma 2.1996E-01 4.1821E-01 3.6285E-01

Diskuse ke grafickému vystupu exploratorni analyzy

Diagnostické grafy exploratorni analyzy jsou znazornény na obr 1 —3.

a) Bodové a krabicové grafy na obr. 1 signalizuji jednak piitomnost pé&ti vybolujicich
hodnot smérem k vy$§im hodnotdm a déle ukazuji na asymetrii rozdéleni.

b) Kvantilovy graf na obr. 1 ukazuje odchylky od normalniho rozdéleni a signalizuje
jeden vybocujici bod na strané vyssich hodnot.

¢) Graf symetrie na obr. 1 ukazuje na asymetrii dat. Pro idealn€ symetrick4 rozd€leni
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by body mély leZet na horizontalni pfimce s isekem rovnym medidnu. Nelinearni
pribéh indikuje nehomogenitu vyb&ru. Byl zjiStén jeden vybolujici bod smérem
k vy$sim hodnotam.

d) Graf polosum na obr. 1 rovné&Z signalizuje asymetrii, protoZe data maji vyrazny
trend. Graf signalizuje pfitomnost dvou vybocujicich hodnot.

e) Graf Sikmosti na obr. 2 je zobrazen pro indikaci Sikmosti. Za pfedpokladu symetrie
vyjde idealni horizontalni pfimka.Graf ukazuje na seSikmeni k niz§im hodnotam.
Smérnice uréuje odhad parametru Sikmosti.

f) Graf na obr. 2 indikuje $picatost. Pro normalni rozd€leni je idealni horizontalni
pfimka.

g) Q-Q graf je znizornén na na obr. 2. Timto grafem je ovéfovana shoda rozdéleni
vybéru s norméalnim rozdélenim. V idealnim ptipadé normality leZi jednotlivé body na
ptimce. Carou je vyznaden teoreticky priibsh. Pribéh testovanych dat naznaduje, Ze
data nepochazeji z normalniho rozdéleni. Z toho plyne, Ze pouziti aritmetického
primé&ru jako odhadu stfedni hodnoty, by bylo nespravné. Graf indikuje pfitomnost
jedné vybodujici hodnoty smérem k vys§im hodnotam.

h) Podminény Q-Q graf na obr. 2 je znazorné€n rovnéz pro ovéfeni shody rozdéleni
vyb&ru s normalnim rozdélenim. V idealnim pifipad€ normality leZi body na pfimce.
Prib&h dat indikuje, data nepochazeji znormalniho rozdéleni. Graf indikuje
piitomnost jedné vybodujici hodnoty smérem k vy$Sim hodnotam.

i) Graf rozptyleni s kvantily na obr. 3 umoziuje orientani posouzeni symetrie, resp.
piitomnosti odlehlych bodd podle symetrie a umisténi obdélniki. Tento graf
signalizuje asymetrii testovaného vybéru.

j) Graf hustoty pravdépodobnosti na obr. 3 nabizi porovnani hustoty
pravdépodobnosti rozdéleni, z n&hoZ pochazeji naSe data (Carkovana Cara),
s hustotou pravdépodobnosti normalniho rozdéleni (plna ¢ara) jako vhodné vizualni
posouzeni normality dat. Z grafu je zfejmé, Ze testovany vyb&r nepochazi
z normalniho rozdéleni.

k) Kruhovy graf na obr. 3 slouZi pro indikaci normality, resp. symetrie testovaného
rozdé&leni. V idealnim pfipadé m4 tvar kruZnice se symetrickym svislym vysekem ve
tvaru V. Testovany soubor dat pevnosti v prostém tlaku vykazuje asymetrii rozdéleni.

Zavér exploratorni analyzy:

Z prizkumové analyzy dat vyplyva, Ze data jevi asymetrii, nepochazeji
z normalniho rozdéleni a v jednotlivych grafech byla zjiSt€na pfitomnost vybodujicich
hodnot v poctu 1-5.

II. ZAKLADNI PREDPOKLADY

Tato metoda obsahuje dilezité diagnostiky pro oveéfovani pfedpokladi o datech.
Ve vysledkovém souboru statistického software jsou po informaci o vstupnim souboru
a podminkach uvedeny ve tfech odstavcich zakladni diagnostiky.

V prvnim odstavci jsou uvedeny klasické odhady. Ve druhém odstavei je uveden
zavér testu normality na zaklad€ porovnani vypocteného testovaciho kritéria
a tabulkového kvantilu. V testovaném piipadé byl piedpoklad normality zamitnut.
Ve tfetim odstavci je provedeno ovéfeni nezavislosti na zakladé srovnani testu
autokorelace a tabulkového kvantilu. Testovana data lze povaZovat za nezavisla.
V piipadé, Ze jsou detekovany odlehlé body, jsou po jejich vylouceni ze souboru
vypo&teny jesté jednou klasické charakteristiky (4. odstavec) jako v prvnim odstavci.
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Obr. 1: Diagnostické grafy exploratorni analyzy
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Obr. 2: Diagnostické grafy exploratorni analyzy
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Obr. 3: Diagnostické grafy exploratorni analyzy
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(1) TEST NORMALITY:
Tabulkovy kvantil Chi*2(1-alfa,2) 5.9915E+00
Chi”2-statistika 1.3154E+02

Zaver

Predpoklad normality zamitnut

Vypoétena hladina vyznamnosti

0.0000E+00

(2) TEST NEZAVISLOSTTI:
Tabulkovy kvantil t(1-alfa/2,n+1) 2.0518E+00
Test autokorelace 1.1216E+00

Zaveér

Predpoklad nezavislosti piijat

Vypodétena hladina vyznamnosti

1.3595E-01

Predpoklad homogenity vybéru:

Aritmeticky primér 4.8492E-01

Rozptyl 3.2871E-01

Smérodatna odchylka 5.7333E-01

Vnitfni meze

Spodni mez -5.2103E-01

Horni mez 1.2130E+00

(3) DETEKCE ODLEHLYCH BODU:

Bod ¢islo 4 (horni) 2.7100E+00

Bod ¢islo 5 (horni) 1.2700E+00

Bod ¢&islo 7 (horni) 1.2500E+00

Pocet odlehlych bodu 3

Parametry s vynechanymi odlehlymi hodnotami:

Primér 3.2079E-01 Rozptyl 6.5701E-02
Smérodatna odchylka 2.5632E-01 Sikmost 2.3135E+00
Spidatost 7.8612E+00

Zavér z ovéreni zdkladnich predpokladi:

Zavér je shodny se zavé€rem exploratorni analyzy. Data nepochézeji z normélniho
rozdéleni, pfedpoklad normality byl tedy zamitnut. Pfedpoklad nezavislosti byl pfijat.
Dale byly identifikovany tfi odlehlé body.
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1. MOCNINNA TRANSFORMACE

Zakladni predpoklady spole¢né s exploratorni analyzou jsou prvni kroky pfi
analyze neznamych dat. Na zéklad& jejich vysledki je pak tfeba rozhodnout jakym
zpisobem postupovat pifi daldi analyze. Provedenim exploratorni analyzy a ovéfeni
zakladnich predpokladd bylo zji§téno, Ze data testovaného souboru nepochazi
z normalniho rozdéleni, dale data jevi asymetrii a rovnéZz byla zjiSténa piitomnost
odlehlych bodi. Nasledkem toho nelze pouzit primér jako odhad stfedni hodnoty.
Z t&chto vysledkil vyplyva, Ze bude nutné provést nelinearni transformaci dat. Data byla
zpracovana symetrizujici mocninnou transformaci a normalizujici Box-Coxovou
transformaci. Jejich Gi€elem je odstranit asymetrii a pfiblizit se k normalit€ s vyuzitim
vybranych priizkumovych grafii. Po kazdé transformaci je vypodten opraveny priimér.

Ve vysledkovém souboru pouZitého statistického software jsou uvedeny zakladni
statistické charakteristiky plivodnich dat. Tyto Udaje jsou v piedloZzeném ¢lanku
vynechéany, protoze jsou jiz dokumentovany ve vySe uvedenych Ciselnych vystupech
statistického zpracovani. Déle jsou ve vystupu uvedeny optimalni hodnoty exponentu pro
prostou mocninnou i pro Box-Coxovu transformaci, minimalizujici rizné miry Spiatosti
a asymetrie. Pro tento exponent jsou uréeny transformovany primér a rozptyl spolu
s opravenym (retransformovanym) prumérem. V poslednim odstavci je jako ukazka
uvedeno nékolik hodnot po transformaci.

V grafickém vystupu jsou uvedeny ¢&tyfi typy grafi. Na obr.4 je uveden
kvantilovy graf pro piivodni data a pro data po prosté transformaci a po Box-Coxové
transformaci. Na obr. 4 je uveden i graf Hines-Hinesové, ktery je konstruovan pro vybér
optimalniho exponentu pifi prosté transformaci. Teckované Cary odpovidaji mocninam
zleva. Lomena &ara spojuje body odpovidajici nalezenym optimalnim exponentim pro
rizné &asti vyb&ru (kvartil, oktil, sedecil). Pokud lezi tato Cara rovnob&zné€ s nejblizsi
izoarou, lze povazovat transformaci za efektivni. Pokud leZi napfi€, nepochézi
asymetrie dat z mocninné nebo podobné transformace.

Na obr. 5 je uveden Q-Q graf pro pivodni data a pro data po prosté a Box-
Coxové transformaci. Grafy jsou konstruovany pro ovéfeni shody vyb&rového rozdéleni
s normalnim. Dale je na obr. 5 uveden graf maximalni vérohodnosti. Tento graf vyjadiuje
zavislost logaritmu vérohodnostni funkce pro Box-Coxovu transformaci proti hodnoté
exponentu. Poloha maxima kfivky na x-ové ose odpovida optimalni hodnoté exponentu
z hlediska maximélni vérohodnosti pro normalni rozdéleni.

(1) PROSTA MOCNINNA TRANSFORMACE:
(A) Optimalni hodnoty mocniny pro vybrana kritéria:

Optiméalni mocnina -9.3333E-01 Pro Sikmost 2.6720E-02
Optimalni mocnina -1.6000E+00 Pro Spicatost 3.0398E+00
Optimalni mocnina -9.3333E-01 Pro asymetrii 2.4377E-03
Optimalni mocnina -1.2000E+00 Pro asymetrii, rob. 8.8679E-03
Optiméalni mocnina -1.0667E+00 Pro Hinkley-asymetrii 7.4091E-02
Zvolena mocnina -0.93
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Obr. 4: Grafy pro pavodni a transformovand data
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Obr. 5: Grafy pro ptvodni a transformovana data

34



Zpravodaj Hnédé uhli I1/98

Primér 3.5329E+00
Rozptyl 3.5752E+00
Smérodatna odchylka 1.8908E+00
Sikmost -2.6720E-02
Spidatost 2.1414E+00
Opraveny prumeér 2.5865E-01
(B) Kvantilové miry:
Kvantil P Spodni mez Horni mez Polorozptyl
Median 0.5 3.5158E+00 - -
Kvartil 0.25 1.8234E+00 4.9684E+00 3.1450E+00
(C) Miry rozptylu
Kvantil P Polosuma Sikmost Délka konci | Norm. d. koncti
Kvartil 0.25 3.3959E+00 3.8132E-02 0.0000E+00 0.0000E+00
(2) BOX-COXOVA TRANSFORMACE:
(A) Optim4lni hodnoty mocniny pro vybrana kritéria:
Optimélni mocnina -9.3333E-01 pro Sikmost 2.6720E-02
Optimalni mocnina -1.6000E+00 | pro $picatost 3.0398E+00
Optimélni mocnina -9.3333E-01 pro asymetrii 2.4377E-03
Optimalni mocnina -1.2000E+00 | pro asymetrii, rob. 8.8679E-03
Optimalni mocnina -1.0667E+00 | pro Hinkley-asymetrii 6.9461E-02
Optimalni mocnina -8.0000E-01 pro vérohodnost 3.8355E+01
Zvolena mocnina -0.93

Primér -2.7138E+00
Rozptyl 4.1041E+00
Smérodatna odchylka 2.0259E+00
Sikmost 2.6720E-02
Spidatost 2.1414E+00
Opraveny prumér 2.5865E-01
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(B) Kvantilové miry:

Kvantil P Spodni mez Horni mez Polorozptyl
Median 0.5 -2.6955E+00 - -
Kvartil 0.25 -4.2518E+00 -8.8218E-01 3.3697E+00

(C) Miry rozptylu

Kvantil P Polosuma Sikmost Délka konct | Norm. d. koncti

Kvartil 0.25 -2.5670E+00 -3.8132E-02 0.0000E+00 0.0000E+00

(4) SETRIDENA PUVODNI A TRANSFORMOVANA DATA:

Pavodni Po prosté transformaci Po Box-Coxoveé-transformaci
1.1700E-01 3.9436E-01 -6.8656E+00
1.4000E-01 8.0005E-01 -5.6415E+00
1.5500E-01 8.1199E-01 -5.0331E+00
2.7100E+00 7.4079E+00 6.4890E-01

IV. URCENi ROBUSINICH ODHADU PARAMETRU POLOHY
A ROZPTYLENI

Jak jiz bylo uvedeno, vybérovy primér X a vyberovy rozptyl s* jsou efektivni
odhady parametri polohy rozptyleni jediné pro data, kterd pochazeji z norméalniho
rozdéleni. Jestlize vsak vybér pochazi z jiného rozdéleni nez normainiho nebo jsou-ii
v datech vybo&ujici hodnoty, jak je tomu i vnaSem testovaném piiklad€, efektivnost
odhadt X a s° rychle klesa. Pii naruSeni predpokladu normality zpiisobeném obydejné
vybo&ujicimi méfenimi lze ziskat efektivni odhady s vyuZitim robustnich metod.

(1) KLASICKE ODHADY PARAMETRU (za piedpokladu normality):

Primér 4.8492E-01
Smér. odchylka 5.7333E-01
Rozptyl 3.2871E-01
95.0% spolehlivost

Spodni mez 2.5335E-01
Horni mez 7.1650E-01
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2) ROBUSTNI ODHADY PARAMETRU (pro neplatnost normality):

Median 2.6000E-01

Smér. odchylka 1.5516E-01

Rozptyl 2.4074E-02

Smér. odchylka 2.0123E-03

Rozptyl (nepar.) 4.4859E-02

Smér. odchylka 2.0547E-03

Rozptyl (Marritz) 4.5329E-02

95.0% spolehlivost

Spodni mez 1.6664E-01

Horni mez 3.5336E-01
Urezani 5% (pro P=0.05) | 10% (pro=0.10) | 40%(pro=0.40)
Prumeér 3.9991E-01 3.6192E-01 2.5558E-01
Smér. odchylka 4.3211E-01 4.6437E-01 1.5949E-01
Rozptyl 1.8672E-01 2.1564E-01 2.5436E-02
Primér, winsor. 4.3042E-01 4 3004E-01 2.5712E-01
St.odch. winsor. 3.9736E-01 4.1044E-01 7.2868E-02
Rozptyl, winsor. 1.5790E-01 1.6846E-01 5.3098E-03
95.0% spolehlivost

Spodni mez 2.2891E-01 1.7617E-01 1.7584E-01
Horni mez 5.7092E-01 5.4767E-01 3.3532E-01

3.3 ZAVER

Soubor vysledkil laboratorniho stanoveni pevnosti hornin zkouskou v prostém
tlaku byl statisticky zpracovan metodou jednorozmémych dat za u&elem zji§téni
bodovych a intervalovych odhadi. Data byla nejprve analyzovana pomoci spojité
exploratorni analyzy, ktera pomoci diagnostickych grafu odhaluje zvlastnosti dat.
U testovaného souboru byly identifikovany odlehlé body, dale bylo zjisténo, ze data
nepochazi z normalniho rozdéleni a jevi asymetrii.

Dalsi analyza vstupnich dat, tj. ovéfeni zakladnich predpokladd, spoé&ivala
v ovefeni predpokladu normality, nezavislosti a v detekci vybocujicich hodnot. Jednim ze
zavéru ovéfovani zakladnich pfedpokladi bylo zamitnuti pfedpokladu normality, coz
znamena, ze data nepochazi z normalniho rozdéleni. Ovéfenim predpokladu nezavislosti
dat byla testovdna vzajemnd nezavislost vysledki. Pfedpoklad nezavislosti dat byl pfijat,
Ize tedy u€init zavér, Ze se vysledky navzijem neovliviiuji.
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Vstupni analyzou dat, exploratorni analyzou a ovéfenim zakladnich pfedpokladd,
bylo zji§téno, ze rozdéleni vyb&ru dat se odlijuje od rozdéleni normalniho, dale data jevi
asymetrii a rovn&z byly zjidtény odlehlé hodnoty. Na zaklad€ tohoto zjisténi lze ucinit
nekompromisni zavér, ze pro vypodet bodového parametru nelze pouiit klasicky
aritmeticky priamér.

Z vySe uvedeného vyplynula nutnost zpracovani dat matematickou transformaci.
Prostou mocninnou transformaci a Box-Coxovou transformaci byl vycCislen opraveny
primér, ktery je pro ob& metody shodny. Pfi neplatnosti normality 1ze rovn€z proveést
vypodet odhadl parametrd polohy i rozptyleni svyuZitim robustnich metod.
V nasledujici tabulce je provedeno srovnani vypoétenych jednotlivych odhadl polohy
a rozptyleni.

Statisticka charakteristika Bodovy odhad | Spodni mez Horni mez
Pramér 4.8492E-01 2.5335E-01 7.1650E-01
Mediin 2.6000E-01 1.6664E-01 3.5336E-01
Opraveny pramér po 2.5865E-01 - -
prosté mocninné transformaci

Opraveny prumér po Box- 2.5865E-01 - -
Coxové transformaci

Pramér pro P=0.05 3.9991E-01 2.2891E-01 5.7092E-01
Prumeér pro P=0.10 3.6192E-01 1.7617E-01 5.4767E-01
Prumér pro P=0.40 2.5558E-01 1.7584E-01 3.3532E-01

Z prehledu v tabulce je zfejmé, Ze rozdil mezi klasickym a opravenym primérem,
ptipadné i medianem, je asi 50%. Z praxe je znamo, zZe u vétSiny souboru, zejména
v oblasti technickych, nelze zpravidla olekavat normélni rozdéleni. Jakych chybnych
zavért se lze dopustit v rozhodovacich procesech pii pouZiti klasickych odhadl neni jiz
tfeba dale komentovat.
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II. LINEARNI REGRESNI MODELY
1. Formulace linearniho regresniho modelu

Cilem vtadé technickych oborii je objasnéni vztahu mezi méfenou, vystupni
zavisle proménnou (vysvétlovanou) veliinou y a nastavovanymi, vstupnimi nezévisle
promé&nnymi (vysvétlujicimi) velidinami x. Typ zavislosti vyjadfeny zndmou funkei
y = f (x, B), z&lezi na tom, jaké povahy jsou veli€iny y a x.

K odhadu parametru regresni funkce se pouzivaji mnohé metody a postupy, ale
nejdastdji jde o rizné varianty znamé metody nejmensich Ctvercl. Podle této metody se
ziskaji odhady parametrli regresni funkce minimalizaci soultu Ctvercl rezidui, tj.
odchylek skutenych a vypoéitanych hodnot vysvétlované proménné y.

Metoda nejmensich Stvercii mad optimdlni viastnosti za jistych predpokladi:

a) Regresni parametry 8 mohou nabyvat libovolnych hodnot. V technické praxi
viak &asto existuji omezeni parametrd, ktera vychazeji zjejich fyzikéalniho
smyslu.

b) Regresni model je linearni v parametrech a plati tzv. aditivni model méfeni
y=xB+¢, kde € jsou ndhodné veli€iny, které zahrnuji jak chyby méfeni, tak
i chyby modelu, vzniklé tim, Ze funkce pfedpokladaného modelu neodpovida
skuteénému ,teoretickému’ modelu.

¢) Zadné dva sloupce matice nendhodnych, nastavovanych hodnot, vysvétlujicich
proménnych nejsou kolinearni, tj. rovnob&zné vektory.

d) Nahodné chyby maji nulovou stfedni hodnotu.

e) Nahodné chyby maji konstantni rozptyl, plati homoskedasticita.

f) Nahodné chyby jsou vzajemné nekorelované.

g) Nahodné chyby maji normalni rozdéleni.

Pokud plati prvnich $est pfedpokladd, jsou odhady, ziskané minimalizaci kritéria
nejmengich &tvercl, nejlepsi nevychylené linedrni odhady regresnich parametri.
V piipadé, ze plati i posledni pfedpoklad, maji odhady normalni rozd&leni uZz pro
kone¢né rozsahy vybéru.

2; Statistické vlastnosti metody nejmensich &tvercl

Bodové odhady jsou nahodné veliiny, které maji vpraxi maly vyznam.
Dilezit&jsi jsou konfidencni oblasti, nazyvané také oblasti nebo intervaly spolehlivosti,
ve kterych lezi teoretickd hodnota se zvolenou pravdépodobnosti (1-ct). Stejné jako
u jednorozmérnych vybéri se voli hladina vyznamnosti e 0.05 nebo 0.01. Této volbé
odpovidaji 95%ni nebo 99%ni intervaly spolehlivosti. Pro konstrukci konfiden¢nich pasi
se pouziva Schéffeho metoda nebo metoda Working-Hottellinga.

S konstrukci intervalG spolehlivosti Uzce souvisi festovdni vyznamnosti
parametrit f Standardnim vystupem vé&tSiny programl regresni analyzy je zavér
Fisherova-Snedecorova F-testu o vyznamnosti koeficientu determinace a vysledky
Studentova t-testu o vyznamnosti jednotlivych parametri . F-test urCuje zaroven
simultinni vyznamnost viech sloZek vektoru B kromé absolutniho ¢lenu. Mohou nastat

tyto pfipady:
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a) F-test vychéazi nevyznamny, vechny t-testy vychazi rovnéz nevyznamné. Model se
pak povaZzuje za nevhodny, protoZe nevystihuje variability proménné y.

b) F-test a viechny t-testy vychazi vyznamné. Model se povazuje za vhodny vystiZeni
variability proménné y. Neznamena to ale, Ze je model spravné€ navrZen.

c) F-test vychazi vyznamny, ale t-testy nevyznamné u nékterych regresnich parametri.
Model lze povaZovat za vhodny a provadi se piipadné vypousténi téch vysvétlujicich
proménnych x, pro které jsou parametry 3 nevyznamné odliSné od nuly.

d) F-test sice vychazi vyznamny, ale t-testy parametri 3 indikuji nevyznamnost vSech
vysvétlujicich proménnych. To je paradox, protoze formalné sice model jako celek
vyhowuje, ale zadna z vysvétlujicich proménnych neni sama o sob& vyznamna. Jde
o dusledek multikolinearity.

Multikolinearita neznamena v pravém slova smyslu poruSeni predpokladd
klasické metody nejmensich Ctvercd, ale souvisi pouze s predpokladem o pozitivni
definitnosti matice. Je to situace, kdy jeden ze sloupcli x matice je linearni kombinaci
nékolika ostatnich sloupcd. V pfitomnosti multikolinearity nelze odd€lené sledovat vliv
jednotlivych vstupnich proménnych x. Multikolinearita se vyskytuje ¢asto i u modeli
dobte popisujicich data, u polynomickych modeli a dat z neplanovitych experimentd.

Zakladni pfi¢inou vzniku multikolinearity je, Ze regresni model obsahuje
nadmérny po&et nezavislych proménnych, které vyjadiuji stejné faktory. Dale mize byt
multikolinearita zplisobena nevhodnym rozmisténim bodd, hodnoty nezavisle
proménnych kolisaji jen vmalém rozmezi a jsou proto kolinearni s vektorem
odpovidajicim absolutnimu ¢lenu. Multikolinearitu mize zplsobit i fyzikalni omezeni
vmodelu nebo datech, kdy vznikaji vazby mezi nezavisle promé€nnymi piimo ve
studovaném systému.

K posouzeni vhodnosti navrzeného linearniho modelu s ohledem na moZnou
multikolinearitu navrhl Scott testacni charakteristiku Mr. Na zékladé simulaCnich
experimentl byla vytvofena nasledujici pravidla k posouzeni stupné multikolinearity:

1. Pokud je My> 0.8, je model z hlediska multikolinearity nevyhovuyjici a je tFeba

provést jeho pfipadnou tpravu.

A Dot Jd 1= NA eecmboead n 22~ WA -0 00 in madal = Li~idinl o
L. A URnUG il IS E ¥ORLILUE vaiu Veadei = ivA§ LT, i iiivuvi £ PiivGAoInG

multikolinearity malo vyhowujici a je vhodnd jeho pﬁpa&né uprava.
3. Pokud je Mt < 0.33, neni model vyrazné ovlivnén multikolinearitou a neni
tfeba ho upravovat.

Test pomoci Scottova kritéria My je vhodny predevsim tam, kde je zapotiebi
stanovit ty vysvétlujici proménné, které vyznamné pfispivaji k objasnéni variability
promé&nné y. Pokud jde pouze o tUlohu aproximace dat empirickym modelem, napf.
polynomem, neni tfeba k hodnotam M ptihlizet.

3. Regresni diagnostika

Pfi vyhodnoceni linearnich i nelinearnich regresnich modeli se Casto uziva
metody nejmensich &tvercl. Tato metoda vSak jeSté nezajiStuje nalezeni pfijatelného
modelu, a to jak ze statistického, tak fyzikalniho hlediska. Zdrojem problému jsou slozky
tzv. regresniho tripletu (data, model, metoda odhadu).

Metoda nejmensich &tvercl poskytuje optimélni vysledky jenom pii souc¢asném
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splnéni pfedpokladd o datech a o regresnim modelu. Pokud tyto predpoklady nejsou
splnény, je metoda nejmenSich &tverct nevhodna. Regresni diagnostika obsahuje
postupy k identifikaci:

a) kvality dat pro navrzeny model,

b) kvality modelu pro navrZena data,

c) splnéni zakladnich ptedpokladi metody nejmensich Ctverca.

Zéakladni rozdil mezi regresni diagnostikou a klasickymi testy spoCiva v tom, Ze
u regresni diagnostiky neni tfeba piesné formulovat alternativni hypotézu a jsou pfitom
odhaleny typy odchylek ideélniho regresniho tripletu. Timto pojetim se naSe regresni
diagnostika blizi spiSe k exploratorni regresni analyze, ktera vychazi z faktu, ze ,, uZivatel
vi o analyzovanych datech prece jenom vice nez pocitac”. Pocital slouzi jako nastroj
analyzy dat, modelu a metody odhadu. Model je navrhovan interaktivné spolupraci
uZivatele s programem na osobnim pogcitadi. Tim by mél byt omezen vznik formélnich
regresnich modelt;, které nemaji fyzikalni smysl a jsou v technické praxi nepouZitelné.

3.1  Vyuziti pruzkumové analyzy dat

O metodach prizkumové (exploratorni) analyzy jednorozmérnych dat bylo
pojednano v pfedchozim &lanku. V regresni analyze jsou vyuzivany tyto metody:

a) pro urdeni statistickych zvlastnosti jednotlivych proménnych nebo rezidui,

b) k posouzeni ,,parovych® vztahi mezi viemi sledovanymi proménnymi,

c) k ovéfeni predpokladd o rozdéleni proménnych.

K orientaénimu posouzeni vztahi mezi jednotlivymi proménnymi se uZiva
rozptylovych grafii, kde se na osy vynadeji piimo hodnoty sledovanych proménnych.
Informace o multikolinearité lze ziskat vynesenim dvojic vysv&tlujicich proménnych.
Priblizné linearni zavislost zde indikuje silnou multikolinearitu. Na druhé strané vsak
miZe vést vynaSeni y proti x k mylnym zavérim o nelinearit¢ modelu, ktery je ve
skute¢nosti linearni.

K ovéfeni normality dat se &asto pouziva Q-Q grafi. Mezi zékladni techniky
prizkumové analyzy patii i stanoveni volby rozsahu a rozmezi dat, jejich variability
a piitomnosti vybocujicich pozorovani. K tomu lze napf. vyuZit grafli rozptyleni
s kvantily a fady dal3ich postupti. Pfes svoji jednoduchost umoziiuje prizkumova analyza
identifikovat jeSté pred vlastni analyzou:

a) nevhodnost dat, tj. malé rozmezi nebo pfitomnost vybolujicich bodd,

b) nespravnost navrzeného modelu (skryté proménné),

¢) multikolinearitu,

d) nenormalitu.

3.2  Posouzeni kvality dat
Kvalita dat izce souvisi s uZitym regresnim modelem. Pfi posuzovani se sleduje
zejména vyskyt vlivnych bodd, které jsou hlavnim zdrojem fady problémi, predevsim
zkresleni odhadl a rist rozptyld az k naprosté nepouzitelnosti regresnich odhadi
parametri. Vlivné body ovliviiuji vétSinu vysledkd regrese a lze je rozdélit do tfi
zakladnich skupin:
a) Hrubé chyby, které jsou zpisobeny méfenou veli¢inou (vybolujici
pozorovani) nebo nevhodnym nastavenim vysvétluyjicich proménnych
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(extrémy). Jsou obvykle disledkem chyb pfi manipulaci s daty.

b) Body s vysokym vlivem jsou specialné vybrané body, které byly pfesné
zmé&feny a obvykle rozsituji predik&ni schopnosti modelu.

c) Zddnlivé vlivné body vznikaji jako disledek nespravné navrzeného regresniho
modelu. Podle toho, kde se vlivné body vyskytuji, 1ze provést d€leni na:
1. vybo&ujici pozorovani, které se na ose y vyrazné lisi od ostatnich,
2. extrémy, které se li§i vhodnotich na ose x nebo vjejich kombinaci

(v ptipadé multikolinearity) od ostatnich boda.

Vyskytuji se viak i body, které jsou jak vybocujici, tak i extrémni. O jejich
vysledném vlivu viak rozhoduje zejména to, Ze jsou extrémy. K identifikaci vlivnych
bod# typu vybodujiciho pozorovani se vyuziva predevsim rezidui a k identifikaci extrém
pak diagonalnich prvkl projekéni matice.

Statistick4 analyza rezidui vychazi z predpokladu, Ze jde o odhady chyb. Pomoci
rezidui se tak ov&fuji vlastnosti chyb, i kdyZ tento pfistup neni zcela spravny, nebot
rezidua nejsou nezavisla, i kdyz chyby nezavislé jsou. Rezidua jsou rozliSovana na
klasickd, normovand, standardizovand, Jackknife, predikovana a rekurzivni. Rtzné
typy rezidui se li§i co do vhodnosti k diagnostickym tcelim:

1) k identifikaci heteroskedasticity postaduji standardizovana rezidua,

2) k uréeni vybo&ujicich bodd pak Jackknife rezidua nebo predikovana rezidua,

3) k detekci autokorelace rekurzivni rezidua.

K analyze rezidui se uZiva predevsim riznych typl grafii. Mezi klasické patii tfi
zékladni typy grafi rezidui, které mohou indikovat nespravnost navrZzeného modelu,
sezénni trendy, heteroskedasticitu nebo vlivné body v datech. Pokud se v téchto grafech
rezidui objevi ,,mrak“ bodd, je indikovana spravnost metody nejmensich Ctverci. Rzné
druhy obrazcli bodt v grafu indikuji pfevazné nespravnost v datech nebo nespravnost
modelu.

K identifikaci riznych typl vlivnych bodd se pouziva fada grafl, které kombinuji
rozliéné typy rezidui s prvky tzv. projekéni matice:

1) Graf predikovanych rezidui

2) Williamaniv oraf

3) Pregibontv graf

4) MCCullohtiv-Meetertiv graf

5) Indexové grafy

6) Rankitové grafy

Pfi posuzovani vlivnych bodd je tfeba mit na paméti, Ze mohou nestejné vyrazné
ovliviiovat rizné charakteristiky regrese. Naptiklad body ovliviiujici vyrazn€ predikci
nemusi byt z hlediska rozptylu parametrii viibec vlivné. Stupeii vlivu jednotlivych bodu je
tfeba posuzovat vzdy sohledem na to, které charakteristiky regrese ovliviiuji.
K identifikaci vlivnych bodu existuje fada dalSich diagnostik, které lze rozdé&lit podle
dvou zékladnich pfistupt:

a) Prvni je zaloZen na sledovani zmén, ke kterym dojde pifi vypusténi

jednotlivych bodu.

b) Druhy piistup vychazi z platnosti linearniho regresniho modelu se specialni

strukturou rozptyla chyb.

Podrobny popis téchto diagnostik lze nalézt v prislusné odborné literatute.
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3.3  Posouzeni kvality navrzeného modelu

Kvalitu regresniho modelu Ize posoudit v ptipadé jedné vysvétlujici proménné x
piimo z rozptylového grafu zavislosti y na x. V pfipadé vice vysvétlujicich proménnych
mohou vdak rozptylové grafy mylné indikovat nelinearitu 1 u linearniho modelu. Z rady
raznych grafi k posouzeni vztahu y a x jsou dva zékladni:

a) parcialni regresni grafy

b) parcialni reziduélni grafy

Parcidlni regresni grafy jsou zafazeny mezi zakladni nastroje pocitacové
interaktivni analyzy regresnich modeld. Vyjadiuji zavislost mezi y a zvolenou vysvétlyjici
proménnou pii statisticky neménném vlivu ostatnich vysvétlujicich proménnych. Tyto
grafy umoZiiuji nejen posouzeni kvality navrzeného modelu, ale indikuji i pfitomnost
vlivnych bodi a nesplnéni pfedpokladi klasické metody nejmensich Etverca.

Parcidlni rezidudlni grafy se oznaduji také jako grafy , komponenta+reziduum®.
Jsou specialni analogii parcialniho regresniho -grafu. Jednd se o zawvislost parcialnich
rezidui pfimo na proménné x. Parcidlni rezidualni grafy se doporucuji predevsim
k indikaci rozliénych. typt nelinearity v pfipadé nespravné navrZeného regresniho
modelu.

Dal3im testem, ktery vychéazi pfimo z rezidui, je zraménkovy test. Nespravnost
navrzeného regresniho modelu se projevi nendhodnosti rezidui a tuto nendhodnost lze
testovat pravé znaménkovym testem, pfi némz se urcuje pocet sekvenci, kde maji rezidua
stejna znaménka.

3.4  Ovéreni predpokladi nejmensich Ctverci

Privodnim jevem rady méfenych dat je heferoskedasticita. Heteroskedasticita
znamena poruseni piedpokladu o konstantnosti rozptylu chyb. Je-li rozptyl chyb
v datech konstantni, nazyvaji- se pak data homoskedastickd. Rozptyl méfeni byva
rostouci funkci velikosti proménné y, protoze relativni presnost méfeni je obyCejné
konstantni. Tento typ heteroskedasticity lze odhalit v grafu zavislost: étverce rezidui na y.
Vznika obrazec s vyraznym linearnim nebo nelinearnim trendem.

Piedpokladem pro spravné vyhodnoceni regresniho modelu je nezéavislost
pozorovani, tedy i vzajemna nezavislost chyb. Neni-li tento pfedpoklad splnén, hovoii se
o autokorelaci. S autokorelaci se lze setkat pfedev§im v pfipadech, kdy se vybérova
pozorovani vztahuji k riznym &asovym okamZikim nebo intervalim (&asové fady),
v praxi napiiklad pfi sledovani parametrti n&akého zafizeni pracujiciho v kontinualnim
rezimu. Autokorelaci lze testovat, nejpouZivan&jsi je Durbinitv-Watsonitv test a Waldiiv
test. Vysokd hodnota autokorelace muze byt i dusledkem nespravné navrZeného
regresniho modelu.

K ovéfeni normality chyb se uZiva jiz zminéného Q-Q grafu, v némZ se na osu
potadnic vynadi porfadkové statistiky rezidui a na osu soufadnic kvantily normovaného
normalniho rozdéleni pro porfadové pravdépodobnosti. Pokud je zjisténo, Ze chyby
nemaji normované normalni rozdéleni, mize to byt zpUsobeno jinym rozdélenim chyb
nebo Castéji pritomnosti vliivnych bodu.
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4, Postupy pfi poruSeni predpokladit metody nejmensich Etverci

V kapitole 1. byly uvedeny predpoklady, za kterych vede metoda nejmensich
Stvercl k nejlepsim nestrannym linearnim odhadiim. Z téchto predpokladl vychézi také
konstrukce intervalii spolehlivosti a testi vyznamnosti. V praxi vSak byvaji nékteré
predpoklady poruSeny. NejduleZit&jsi diagnostické postupy k odhaleni poruSeni
predpokladti metody nejmensich &tvercl jsou uvedeny piedchozi kapitole 3.

V tad& praktickych Gloh jsou na regresni parametry kladena omezeni zajiStujici
jejich fyzikalni smysl a interpretovatelnost. Nejcast&j$im omezenim v praxi je pozadavek,
aby regresni model prochazel poéatkem. Dalsim piikladem jsou Casto poZadované kladné
hodnoty parametrd. Do této skupiny patfi tedy ulohy, kdy né€které parametry musi
nabyvat zadanych hodnot, dale kdy nékteré parametry musi zachovéavat pfedepsané
vzdjemné poméry, soudty nebo rozdily nékterych parametri se musi rovnat zadanému
Cislu nebo regresni model musi prochéazet zadanymi body o znamych soufadnicich. Pro
feSeni t&chto omezeni se pouZiva technika Lagrangeovych multiplikator(, neboli mefoda
podminkovjch nejmensich étvercii (MPNC). Pri nekonstantnosti rozptylu se vyuZiva
metody vdienjch nejmensich tvercii (MVNC). Metody zobecnénjch nejmensich
Gtvercii- (MZNC) se vyuziva pti autokorelaci, mefody raciondlnich hodnosti
u multikolinearity. Metoda rozsifenych nejmensich Ctverci (MRNC) se pouziva
v piipadg, Ze viechny proménné jsou zatizené nahodnymi chybami Jsou-li rozdéleni dat
jind neZ normalni a data s vyboCujicimi hodnotami a extrémy, pak se vyuZiva robustnich
metod. Podrobny popis téchto metod 1ze nalézt v odborné literatufe.

5. PRIKLAD STATISTICKEHO ZPRACOVANI MODELU LINEARNI
REGRESE

5.1 Zad4ni: Pro hodnoceni rozpojitelnosti je pouZivana jednotna klasifikace sedimentd
JKS. Hodnoticim kritériem je index JKS, jehoz hodnota je stanovena na zakladé
vysledkii nasledujicich laboratornich zkouSek: urCeni obsahu jilovych minerall
a karbonat, stanoveni objemové hmotnosti a vlhkosti, zkousky odporu v penetraci
apevnosti v prostém tlaku. Uvedené zkousky jsou ve stejném poradi uloZeny ve
vstupnim souboru a predstavuji nezavisle proménné x; aZ X a index JKS predstavuje
zavisie proménnou y. Vstupni data nejsou pro svojt rozsahiost v cianku uvedena.

5.2 ReSeni: U vstupnich dat bylo provedeno statistické zpracovani pomoci software

Adstat
VSTUP ) ) )
(1) ZVOLENA STRATEGIE REGRESNI ANALYZY:
Omezeni, P 1.0000E-34
Transformace Ne
Viahy Ne
Absolutni élen zahrnut Ano

Uvedené podminky se definuji pro zaji§téni maximalni flexibility linearni regrese.

Omezeni P je omezeni na vlastni &isla. Implicitni hodnota je 1E-34. Pro bézné
tlohy odpovida tato volba klasické metodé nejmensich Ctvercu. Cim je tento parametr
vyssi, tim je také vySsi vychyleni odhadd.
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(2) PODMINKY A KVANTILY PRO STATISTICKE TESTY:

Hladina vyznamnosti, alfa 0.050

Pocet bodu, n 67

Podet parametri, m 6

Kvantil Studentova rozdéleni t(1-alpha/2 n-m) 2.000

Kvantil rozd. Chi-kvadrat Chi-square(1-alpha,m) 14.067

VYSTUP ] ]

(1) PREDBEZNA STATISTICKA ANALYZA:

Proménna| Prumér | Smérodatni odchylka | Parovy korelacni | Spoétena

koeficient hladina
vyznamnosti

Y 1.0276E+02 4.1375E+00 1.0000 | e
x1 6.1761E+01 1.2143E+01 -0.4050 0.001
X2 6.9104E+00 7.3808E+00 0.5123 0.000
x3 2.1184E+00 1.0798E-01 0.8257 0.000
x4 3.2096E+01 5.9861E+00 -0.7177 0.000
x5 2.2888E+02 1.0395E+02 0.9051 0.000
X6 2.4075E+00 3.7446E+00 0.5705 0.000

Pro v8echny proménné jsou vypocteny pruméry, smérodatné odchylky a parové
korela¢ni koeficienty vSech vysvétlujicich proménnych (xi) vzhledem k vysvétlované
proménné (y) a parové korelaéni koeficienty mezi vysvétlujicimi proménnymi.

Pirové korelac¢ni koeficienty mezi dvojicemi

Spoctend hladina vyznamnosti

vysvétlujicich proménnych
x1 versus x2 -2.7478E-01 0.024
x1 versus x3 -6.6220E-01 0.000
x1 versus x4 6.2289E-01 0.000
x1 versus x5 -4.1477E-01 0.000
x1 versus x6 -1.1705E-01 0.346
X2 versus X3 3.4107E-01 0.005
x2 versus x4 -2.0311E-02 0.870
X2 versus x5 2.8591E-01 0.019
X2 versus X6 1.3679E-01 0.270
x3 versus x4 -8.2549E-01 0.000
X3 versus x5 7.8489E-01 0.000
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x3 versus x6 3.1669E-01 0.009
x4 versus x5 -7.6367E-01 0.000
x4 versus x6 -2.8004E-01 0.022
x5 versus x6 3.4719E-01 0.004

(2) INDIKACE MULTIKOLINEARITY:

C Vlastni ¢isla Cisla podminénosti | Variance inflation | Vicends.korel.
li] | korel. matice Ij] Kl factor VIFj] koef pro X[j]
1 1.0840E-01 3.0337E+01 2.2284E+00 0.7425

2 1.5502E-01 2.1214E+01 1.7191E+00 0.6468

3 5.3361E-01 6.1629E+00 5.4598E+00 0.9038

4 9.2525E-01 3.5542E+00 5.7537E+00 0.9090

) 9.8915E-01 3.3246E+00 3.6278E+00 0.8511

6 3.2886E+00 1.0000E+00 1.1569E+00 0.3683

Maximalni Cislo podminénosti K: 3.0337E+01
(K[j1, K > 1000 indikuje silnou multikolinearitu)

(VIF[j] > 10 indikuje silnou multikolinearitu)

K identifikaci multikolinearity bylo pouzito &islo podminénosti K a faktor VIF.
Jsou-li hodnoty K a VIF vy3si neZz uvedené meze, pak je mezi nezavisle proménnymi
silnd linearni zavislost, ktera zhorSuje statistické vlastnosti odhadi a v né&kterych
finadech mii¥e znehodnotit i celou analyzu. V na§em pifipadé nebyla multikolinearita

pomoci K a VIF zjisté€na.

(3) ODHADY PARAMETRU A TESTY VYZNAMNOSTL:

Parametr Odhad Smérodatn4 Test Ho: B[j] =0 vs. Ha: B[j] <0
odchylka
t-kriterium | hypotéza Hy je | Hlad. vyz.
B[ 0] 8.2360E+01 | 2.7951E+00 | 2.9466E+01 Zamitnuta 0.000
B[ 1] 6.2429E-02 | 6.3875E-03 | 9.7736E+00 Zamitnuta 0.000
B[ 2] 1.8137E-01 9.2303E-03 | 1.9649E+01 Zamitnuta 0.000
B[ 3] 7.3820E+00 | 1.1244E+00 | 6.5653E+00 Zamitnuta 0.000
B[ 4] -1.6450E-01 | 2.0821E-02 | -7.9006E+00 Zamitnuta 0.000
B[ 5] 1.8550E-02 | 9.5208E-04 | 1.9484E+0l Zamitnuta 0.000
B[ 6] 2.8530E-01 1.4925E-02 | 1.9116E+01 Zamitnuta 0.000
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V tabulce (3) jsou uvedeny odhady parametrl, jejich smérodatné odchylky
at-testu pro testovani vyznamnosti individualnich parametri. Verbalné je vyjadren
vysledek testu nevyznamnosti, nulovd hypotéza je zamitnuta, parametry lze tedy
povaZovat za vyznamné. V poslednim sloupci je pak zpétn€ spodcitana hladina
vyznamnosti t-testu.

(4)  STATISTICKE CHARAKTERISTIKY REGRESE:

Vicenasobny korela¢ni koeficient, R 9.9526E-01
Koeficient determinace, R"2 9.9054E-01
Predikovany korelaéni koeficient, Rp"2 9.9304E-01
Stfedni kvadraticka chyba predikce, MEP 2.3392E-01
Akaikeho informadni kritérium, AIC -1.0896E+02

V tabulce (4) je vyCislen vicenasobny koeficient a koeficient determinace, coz je
{tverec vicenasobného korelaéniho koeficientu, dale je spocitan predikovany korelani
koeficient, stfedni kvadraticka chyba predikce a Akaikeho informacni kritérium.

Stfedni kvadraticka chyba predikce, MEP se pouziva k ov€feni linearity modelu.

Vhodny model indikuje nejnizsi hodnota MEP. Nelinearitu lze dobfe indikovat statistikou
AIC. Za nejvhodnéjsi je povaZovan model, pro ktery je AIC minimalni. Predikovany
koeficient determinace Rp® je vypodten pomoci statistiky MEP a jeho vysoka hodnota
potvrzuje vhodnost zvoleného modelu.

(5) ANALYZA KLASICKYCH REZIDUI:
Bod Mérena Predikovana | Smérodatna Klasické Relativni
hodnota hodnota odchylka reziduum reziduum
i yexpli] yvypli] s(yvypli]) efi] er[i]
1 9.9000E+01 9.9302E+01 | 8.7963E-02 -3.0178E-01 | -3.0483E-01
2 1.0100E+02 1.0105E+02 | 1.0576E-01 -5.3766E-02 | -5.3234E-02
66 1.0400E+02 1.0456E+02 | 6.7685E-02 -5.6395E-01 | -5.4226E-01
67 1.0100E+02 1.0113E+02 | 9.4521E-02 -1.3005E-01 | -1.2877E-01
Rezidualni soudet ¢tvercu, RSC 1.0691E+01
Primér absolutnich hodnot rezidui, Me 3.1695E-01
Primér relativnich rezidui, Mer 3.0956E-01
Odhad rezidualniho rozptylu, s"2(e) 1.7819E-01
Odhad smérodatné odchylky rezidui, s(e) 4.2212E-01
Odhad Sikmosti rezidui, gl(e) 4.8786E-03
Odhad $§picatosti rezidui, g2(e) 2.9913E+00
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V tabulce (5) je provedena analyza klasickych rezidui naméfenych a vypocitanych
(predikovanych) hodnot, smérodatné odchylky méfeni, klasicka a relativni rezidua. Plati,
7e pokud je naméfena hodnota v&tsi nez vypoditana, je reziduum kladné a naopak.

V tabulce (5) jsou uvedeny hodnoty pouze pro vzorky 1,2 a 66, 67 jako ukazka.
Hodnoty zbyvajicich 63 vzorki jsou pro svoji rozsahlost ze ¢lanku vypustény. Rizné
typy rezidui se li§i co do vhodnosti k diagnostickym ucelim na zaklad€ sestrojenych

a dale uvedenych graf.

V nasledujici tabulce (6) jsou uvedeny vysledky testovani regresniho tripletu.
Testy zahrnuji statistiku F-testu vyznamnosti vicenasobného korelalniho koeficientu,
statistika M pro testaci stupné multikolinearity, statistika SF pro test heteroskedasticity
a statistika L pro ovéfeni normality rezidui. Dale jsou provedeny testy autokorelace
a znaménkovy test trendu v reziduich. Normalita dat byla prokdzana. Rezidua vykazuji
homoskedasticitu, nejsou autokorelovana a nevykazuji trend. Scottovo kritérium
multikolinearity je vét3i neZz hodnota 0.33, ale mensi nez 0.8. V ADSTATu v bodé (2)

neni multikolinearita faktorem VIF indikovana.

(6) TESTOVANI REGRESNIHO TRIPLETU (DATA + MODEL + METODA):

Fisher-Snedocoruyv test vyznamnosti regrese,F.

1.0468E+03

Tabulkovy kvantil, F(1-alpha,m-1,n-m)

2.2541E+00

Zaver

Navrzeny model je vyznamny.

Spoétena hladina vyznamnosti

0.000

Scottovo kriterium multikolinearity, M

4.8111E-01

Zaver

Navrzeny model neni korektni.

Cook-Weisberguv test heteroskedasticity, Sf

5.9340E-02

Tabulkovy kvantil, Chi*2(1-alpha,1)

3.8415E+00

Zaver

Rezidua vykazuji homoskedasticitu.

Spoétena hladina vyznamnosti

0.808

Jarque-Berraiiv test normality rezidui, I.(e) 4.7628E-04
Tabulkovy kvantil, Chi*2(1-alpha,2) 5.9915E+00
Zaver Normalita je prokazana.
Spoétena hladina vyznamnosti 1.000
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Tabulkovy kvantil, Chi*2(1-alpha,1)

3.8415E+00

Zaver

Rezidua nejsou autokorelovana.

Spoctena hladina vyznamnosti

0.451

Znamékovy test, Dt _1.2295E+00
Tabulkovy kvantil, N(1-alpha/2) 1 6449E-+00
Zaver Rezidua nevykazuji trend.
Spoctena hladina vyznamnosti 0.109

V tabulce (7) je uveden prehled vlivnych bodd, ktery se pouZiva k identifikaci
vlivnych a odlehlych bodl. Ostatni hodnoty zde nejsou pro svoji rozsahlost uvedeny.
Diéle jsou uvedeny vérohodnostni vzdalenosti pro prvni a posledni dva vzorky jako
ukazka. Vérohodnostni vzdalenosti se rovnéZz pouzivaji pfi diagnostice vlivnych

a podezielych bodu.

Z numerické analyzy dat z kritiky dat v bodé ¢. 7, tj. indikace vlivnych bodd, byly
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vyhodnoceny celkem 3 outliery uréené Jackknifeovym reziduem. Jedna se o body €. 5, 6

a 54.
(7) INDIKACE VLIVNYCH BODU: (* indikuje odlehly nebo vlivny bod)
Bod Standardizované Jackknife Predikované Diagonalni
reziduum reziduum reziduum prvky
1 eS|i] eJ|i] eP[i] Hli, i
5 -2.4288E+00 -2.5364E+00* -1.0458E+00 3.8938E-02
6 2.5543E+00 2.6830E+00* 1.1055E+00 4.8705E-02
7 4.8362E-01 4.8051E-01 2.3166E-01 2.2339E-01*
24 -1.4886E+00 -1.5041E+00 -7.2368E-01 2.4609E-01*
33 1.5139E+00 1.5308E+00 1.0260E+00 6.1203E-01*
34 2.6367E-01 2.6161E-01 1.2854E-01 2.5028E-01*
35 4.1889E-01 4.1599E-01 2.0039E-01 2.2137E-01*
39 -6.7040E-01 -6.6730E-01 -1.4438E+00 9.6158E-01*
43 1.3059E-01 1.2952E-01 6.2138E-02 2.1296E-01*
54 -2.1581E+00 -2.2283E+00* -9.2489E-01 2.9814E-02
62 -8.0610E-01 -8.0372E-01 -5.5338E-01 6.2190E-01*
67 -3.1612E-01 -3.1374E-01 -1.3692E-01 5.0140E-02
Bod Zobecnéné diag. Cookova Atkinsonova Vliv na
prvky vzdalenost vzdalenost predikci
I Hm|[i,i] DJi] Ali] DF[i]
24 2.7393E-01* 1.0332E-01 2.5159E+00* -8.5935E-01*
33 6.2685E-01* 5.1652E-01* 5.6289E+00* 1.9226E+00*
34 2.5114E-01* 3.3154E-03 4.4253E-01 1.5115E-01
39 9.6187E-01* 1.6070E+00* 9.7740E+00* -3.3385E+00*
62 6.2600E-01* 1.5269E-01 3.0178E+00* -1.0308E+00*
Bod Vérohodnostni vzdalenosti
i LD(b)[i] LD(s"2)[i] LD(b,s"2)[i]
1 2.7078E-02 1.2412E-03 2.8161E-02
2 1.2945E-03 7.2520E-03 8.5275E-03
66 5.3963E-02 8.5908E-03 6.3444E-02
67 5.8903E-03 5.9626E-03 1.1775E-02
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53 DISKUSE KE GRAFICKEMU VYSTUPU

Na obr. 1 je uveden graf predikce rezidua, autokorelace a graf heteroskedasticity.
Na grafu predikovanych rezidui je nakreslen graf rezidui proti hodnotam urCenym
z regresniho modelu. V grafu autokorelace jsou proti sobé vynaSena postupné sousedni
rezidua. Pokud vznikne pfiblizné linearni obraz, je indikovana silnd autokorelace prvniho
tadu. V najem testovaném piipadé nebyla autokorelace zjiSténa. Heteroskedasticita je
indikovana pokud vznikne typicky klinovy obrazec. V naSem pfipadé neni
heteroskedasticita indikovana.

Indexové grafy na obr. 2 maji informativni charakter, graf index-normalizovand
rezidua indikuje outliery a graf index-prvky hat matice indikuje pfitomnost extréma. Pro
vlivné body jsou hodnoty t&chto statistik vyrazné odliSné od ostatnich.

Rankitové grafy na obr. 3 upozoriiuji na vybolujici hodnoty. Graf rankit-
Andrews, rankit-predikovand rezidua a rankit-Jackknife rezidua indikuji shodné
vybocujici bod &.39, 33 a pfipadné i 6.

PH analyze grafi vlivnych bodi na obr. 4 a 5 byly identifikovany outliery
i extrémy. Graf predikovanych rezidui indikuje jeden extrém, bod &.33. Pregiboniiv
graf indikuje outliery a extrémy dohromady, z tohoto grafu byly vyhodnoceny tii vlivné
body, &.33, 39 a 62. Williamsiiw graf indikuje tfi extrémy, bod €33, 39 a 62 a tfi
odlehlé body, & 55, 6 a 54. McCulloh-Meeteruw graf uruje dva extrémy, €.33 a 39.
L-R graf indikuje tii extrémy, body & 33, 39 a 62. Z grafické analyzy lze vyhodnotit
pouze extrémy, outliery nebyly prokézany.

Na zakladé vysledk® jak numerické, tak grafické kritiky dat, nebude z vypoltu
vypustén zadny odlehly bod. Rovnéz vzhledem ke zplisobu ziskani dat (viz zadani) nelze
vylougit ze souboru zadnou hodnotu.
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Obr. 1 Graf predikce - rezidua, autokorelace a heteroskedasticity
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Obr. 2 Indexové grafy
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Obr. 4 Grafy vlivnych bodi
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54 ZAVER
Jako piiklad linearni regrese byla vybrana ukézka z praxe, tykajici se ovéfeni
vztaht mezi vysledky laboratornich zkousek a indexem jednotné klasifikace sedimentd.

Statistickou analyzou byl vyc&islen vicerozmérny linedrni regresni model, ktery
byl ziskan statistickym zpracovanim vstupnich dat po pfedchozim testovani regresniho
tripletu, data + model + metoda, ktery obsahuje dilezité statistické testy pro posouzeni
kvality dat a kvality vy¢isleného regresniho modelu.

Ze statistické analyzy vyplyva, Ze index jednotné klasifikace sedimentii je zavisly
na viech $esti zadanych parametrech x; aZ X a vy¢isleny regresni model ma tvar:

y = 82.360( + 2.795) + 6.2429.107(+6.3875.10°) x; + 1.8137.10"( & 9.2303.10°) x, +
7.3820 (£1.1244) x 5- 1.6450.10 (+ 2.0821.107) x, + 1.8550.10” ( + 9.5208.10°) x5
+2.8530.10" (+1.4925.107) x4

kde y je index jednotné klasifikace sediment
x; obsah jilovych minerald (%)

X, obsah karbonati (%)

X3 objemova hmotnost (g.cm’3)

x4 vlhkost v % objemu (%)

xs odpor v penetraci (N cm™)

Xs pevnost v prostém tlaku (MPa)

Podobnym zptisobem lze zpracovat jednorozmérné linedrni regresni modely
a jednorozmérné linedrni kalibrace, kdy je hledan vztah jednou vstupni nezavisle
proménnou a vystupni zavisle promé&nnou. Dale Ize provadét timto postupem i validaci
novych analytickych metod.
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III. NELINEARNI REGRESNI MODELY

1. Formulace nelinearniho regresniho modelu
Vpraxi se pomoci nelinedrnich regresnich modeli feSi fada technickych
a prirodovédnych uloh. Mezi zakladni patii:

1. Konstrukce kalibra¢nich modeld, jsou-li hodnoty y nelinearni odezvou
méficiho pfistroje na zménu méfené fyzikalni veliCiny nastavitelné
proménné X.

2. Ovéfeni teoretickych modeld popisujicich zakladni fyzikalné-chemické
zakonitosti.

3. Tvorba empirickych modeld, zaloZena na hledani nelinearni zavislosti mezi
vysvétlovanou proménnou y a vysvétlujicimi proménnymi x.

Podle typu tulohy se voli pfistup k procesu tvorby regresniho modelu f(x, B).
Vlastni tloha se formuluje s ohledem na regresni triplet, zadana data, navrZzeny model
a kritérium regrese, podobné jako u linedrnich modelu. Jde vlastn€ o hledani modelu
f (x, B) na zaklad€ zadanych dat a zvoleného kritéria regrese. V fad€ piipadd je model
f(x, B) znam a regresni uloha je zjednoduSena na konstrukci odhadd b parametri 3.
Na rozdil od linernich regresnich modeld maji parametry B v nelinearnich regresnich
modelech vétSinou rozhodujici roli.

Zatimco u linearnich modeld nemivaji regresni parametry fyzikalni smysl a jsou
Casto pouhymi numerickymi koeficienty, maji parametry v nelinearnich modelech €asto
piesny fyzikalni vyznam. Jejich &iselné hodnoty jsou hlavnim cilem regresni analyzy,
napfiklad rovnovazné konstanty (disocia¢ni konstanty, sou€iny rozpustnosti, konstanty
stability) reak&nich produkti, rychlostni konstanty u kinetickych modelt nebo neznamé
koncentrace u titraénich kiivek apod.

Pojmem linearni regresni model se oznacuje model, ktery je linearni kombinaci
modelovych parametrd. To znamena, Ze i linedrni model miZe byt z hlediska priab&hu
modelové funkce nelinearni. Napf. model f (x,8)= B+ B2 sin (X) ma sinusovy prubéh
a pfesto je vzhledem k parametrim B, a 3, linearnim regresnim modelem.

Pro linearni regresni modely plati podminka:
of (xB)
g;= — =konst. =1,....m (1)
oB;
Pokud je aspori jeden parametr [; parcialni derivace g; jeho funkci, jde
o nelinedrni regresni model.

Nelinedrni regresni modely se ¢leni na neseparabilni, separabilni a vnitiné
linedrni modely. Neplati-li podminka (1) pro zadny parametr modelu, pak se jedna
o neseparabilni model. Plati-li podminka (1) aspoii pro jeden modelovy parametr, pak se
jedna o separabilni model. Vnitfné€ linearni modely jsou sice nelinearni, ale Ize je korektni
transformaci neboli reparametrizaci prevést na linearni regresni model. Reparametrizace
znamena transformaci parametrti B do novych y, které jsou funk&né spjaty s ptivodnimi
parametry B. Vhodnou reparametrizaci lze odstranit fadu numerickych 1 statistickych
problému regrese. Z neseparabilnich modeld 1ze Casto reparametrizaci ziskat separabilni
modely a naopak. V praxi se vyclenuji jeSt€ modely linearizovatelné, které 1ze vhodnou
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transformaci pievést na linearni regresni model. Bodové odhady z linearizovanych
regresi se pak pouzivaji pouze jako vychozi odhady.

K bodovému odhadu regresnich parametrd nelinearniho modelu se nejCastéji
pouzivd metoda nejmensich Ctvercd, pfiCemz ziskané bodové odhady jsou nejlepsi
nestranné, jestlize za predpokladl platnosti uvedenych v pfedchozim ¢lanku v prvni
kapitole ulelova funkce nabyva absolutniho minima. Hodnota ucelové funkce je
oznadovana jako globalni extrém (minimum), jestlize se pro dana data jedna o nejmensi
moznou hodnotu odpovidajici bodovému odhadu parametrii z oboru platnosti regresni
funkce. Kromé& globalniho extrému existuji rovnéz lokélni extrémy a obecné neni
zarudeno, ze nalezeny extrém je globalni. Proces hledani extrému ucelové funkce se
nazyva optimalizace a nalezené bodové odhady, vyhovujici cili optimalizace, se nazyvaji
optimalni odhady.

2. Optimaliza¢ni metody

Optimaliza¢ni metody se déli podle zplisobu hledani optimélnich odhadi na
derivaéni a nederivaéni (komparativni). Derivacni metody vySetfuji okoli posledniho
odhadu prostfednictvim derivace Ulelové funkce podle parametri a na zakladé
kvantitativniho vyhodnoceni se vytvaii novy odhad. Pfi komparativnich metodach se
parametry méni podle uritych pravidel a oprava se provadi pouze na zaklad€ porovnani
zmény udelové funkce (zlepSeni, zhorSeni) po posledni zmé&né parametru. Zvlastni
skupinu tvofi algoritmy pro specialni piipady (jina kritéria regrese, robustni odhady).
Podle toho, kolik parametri je optimalizovdno, déli se optimalizani metody na
jednorozmérné a vicerozmérné.

Pfi optimalizaci nastava né€kolik problémid. Prvnim problémem je tzv.
renundance neboli preurCenost modelu. Derivace g; v rovnici (1) maji vyznam miry
citlivosti parametru B; v modelu f(x,8). Miry citlivosti parametri slouzi pfedeviim
v piedb&Zné analyze nelinearnich regresnich modelt k posouzeni jejich kvality a odhaleni
renundance (pfeuréeni), zpusobené nadbytetnym poctem parametrii. Jde o analogii
multikolinearity u linearnich regresnich modelt.

Dalsim problémem je rychlost konvergence optimalizaCni metody, ktera je
spojena se spotiebou resp. nalezenim extrému v rozumném &ase. Rychlost konvergence
souvisi se vzdalenosti odhadu od extrému. Ve vétsi vzdalenosti konverguji lépe
komparativni metody, blizko extrému naopak metody derivacni.

Zvlastnim problémem pfi optimalizaci jsou tzv. vdzané extrémy. V tomto piipadé
je feSeni podmifiovano splnénim néjakych dalSich podminek, napt. fyzikélni redlnosti
optimalizovanych parametrd (kladné vysledky méfeni) nebo dokonce moznosti vypoctu
udelové funkce (kladné argumenty logaritmu). Tento problém se pfi vypocCtu resi
pouZitim penalizaéni funkce (pii Cteni hodnoty znaéné€ zhorSujici hodnotu ucelové
funkce) nebo navratového kédu (pfi nesplnéni podminek se hodnota Gcelové funkce
nevy¢isli a informace o porueni podminek se pieda optimalizujicimu algoritmu, kde je
tato situace oSetiena obvykle zmenSenim zmény odhadu).

Je-li mozno model linearizovat, pouziji se odhady z linearni regrese. V ostatnich

piipadech se pouZiji odhady ziskané studiem submodelli nebo vyplyvajici z fyzikalné-
chemického rozboru problému. Kvalitni optimalizacni algoritmy nejsou zavislé na
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pocateénich odhadech, pfesto je vSak vhodné se presvédCit, zda vysledkem optimalizace
s riznymi pocate¢nimi odhady jsou stejné vysledné odhady parametrii. Neni-li tomu tak,
je tieba podrobné analyzovat regresni model a pfislusné citlivostni koeficienty. Vhodné je

rovnéz zkusit jiné optimalizacni metody.

Mezi nejefektivnéj§i metody z jednorozmérnych optimaliza¢nich metod patfi
Fibonacciho metoda, kterd je metodou komparativni. Predpokladem pouziti této
metody je, Ze vintervalu ve kterém vySetfujeme extrém, neexistuji mimo globalniho
extrému zadné dalsi (lokalni) extrémy. Potom se jedna o problém, jak zvolit poCet bodi
tak, aby se pro nejmensi pocCet vycisleni ucelové funkce zazil pocatecni interval na
pozadovanou délku obsahujici hledany extrém.

Mezi nejjednodussi komparativni vicerozmérné optimalizani metody patfi
metoda s ndhodnym priristkem (varianta metody Monte Carlo). Princip spociva
v generovani rovnomérné nahodnych disel vintervalu < 0,1 >, kterd se pouZivaji
k odhadu - parametrit podle piislusné rovnice. Dal§i komparativni vicerozmérnou
optimaliza¢ni metodou je metoda simplexova.

Nejjednodussi derivaéni metodou je metoda nejvétsiho spdadu. Po minimalizaci se
nové odhady vypocitaji podle pfislusného vzorce. Metoda pracuje lépe ve vetsi
vzdalenosti od extrému. Newtonova metoda vyuziva kvadratickou aproximaci hyperboly
ucelové funkce nad parametry v okoli odhadu, extrém této kvadratické aproximace je
novym odhadem.Cim v&tsi je shoda mezi skuteénou a aproximujici hyperplochou, tim
rychleji je extrém nalezen, obvykle tomu tak byva v okoli extrému pii pouziti ucelové
funkce z metody nejmenSich Ctverct. Levenberg-Marquardtova metoda je kombinaci

v

1 efektivnéj$i metody, se kterymi se lze seznamit 1 ve specializované literature.

3. Regresni diagnostika nelinedrni regrese

Regresni diagnostika vysledkd nelinearnich modell je zna¢né€ komplikovana,
proto jsou zde uvedeny jen nékteré aspekty. Pfedevsim je to statistickd analyza rezidui.
U linearnich modelt slouzi analyza rezidui k ovéfovani né&kterych predpoklada
o chybach, u nelinearnich modeld pak predevSim k posouzeni dosazené tésnosti
proloZeni vypoc¢tené regresni kiivky danymi experimentalnimi body. Analyzou vlivnych
bodu se identifikuji body, které siln€ ovliviiuji odhadované regresni parametry.

3.1  Graficka analyza rezidui

Grafickou (pfedbéznou) analyzou, ktera spoliva v prostém zobrazeni vektoru
rezidui, 1ze snadno odhalit:

a) odlehlé (extrémni) hodnoty v souboru rezidui

b) trend v reziduich

¢) nedostatecné stfidani znaménka u rezidui

d) chybny model nebo vzajemnou zavislost rezidui

e) heteroskedasticitu (nekonstantnost rozptylu) zavisle proménné veli¢iny y

f) nahlou zménu podminek pii méfeni hodnot y

3.2  Statisticka (numericka) analyza rezidui
V fadé regresnich programu aplikované nelinearni regrese v laboratofi je analyza
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souboru rezidui hlavni diagnostickou pomuckou pii hledani a rozliSeni modelu a navic
t&snost dosazeného proloZeni experimentalnimi body je mirou vérohodnosti nalezenych
odhadti. Mezi nejéastgji uZivané statistiky patii predevsim stfedni hodnota rezidui, ktera
by se mé&la rovnat nule, pramérné reziduum a smérodatnd odchylka stFedni hodnoty
rezidui a koeficient Sikmosti a Spicatosti.

K uvedenému uZivani analyzy rezidui je vSak tfeba kriticky poznamenat, zZe
diagnostické vyuZivani neni rigordzni, protoze rezidua nemaji nulovou stfedni hodnotu,
jsou vychylend a dale jsou pfiblizn€ linearni kombinaci chyb. Jsou navic zavisla na
skutednych hodnotach parametri. K testovani rezidui lze uzit vSech statistik uZzivanych
u linedrnich regresnich modell. Potize zde ¢ini pouze ureni rozdé€leni testaCnich
statistik, které jsou zavislé na nelinearit¢ modelu.

3.3  Analyza vlivnych bodi

U linearnich regresnich modell jsou vSechny charakteristiky k odhaleni vlivnych
bod@ funkei rezidui a diagonalnich prvkd projekéni matice. Rada charakteristik vlivnych
bodl pouZiva odhadd, uréenych ze vech bodl kromé i-tého.

U nelinearnich regresnich modeld je situace komplikovadna tim, Ze jiz nelze
vyjadfit odhady parametrii a rezidua jako linearni kombinaci experimentalnich dat.
Pouzije se linearizace nelinedrniho modelu, je mozné pouZit pfimo vSech technik
odhaleni vlivnych bodi v linearnich modelech.

Vlivné body Ize snadno identifikovat na zakladé Jackknife rezidui. K vyjadreni
vlivu jednotlivjch bodi na odhady parametrd lze pouzit i kvadratického rozvoje
regresniho modelu a vy&islovat zmény vektoru vychyleni pfi vynechani i-tého bodu nebo
zmény stfedni hodnoty i-tého rezidua pfi vynechani i-t¢ho bodu. Mezi nelinearni miry
vlivu i-tého bodu na odhady parametri patii vérohodnostni vzddlenost LD; .

4, Hledani nejlepSiho nelinearniho regresniho modelu
Kvalita nelinearniho modeiu se posuzuje podobné jako u linearniho s ohledem na
nasledujici kritéria:

a) Kvalita nalezenych odhadu

Kvalita nalezenych odhadd parametrui se posuzuje podle intervalu spolehlivosti
parametr, popt. podle testd hypotézy. Jsou-li intervaly spolehlivosti pfili§ Siroké, nebo
n&které parametry jsou statisticky nevyznamné, znamena to, Ze model je blizky
pieduréenému modelu a je tedy prili§ sloZity (vysoka korelace mezi parametry).

b) Kvalita dosazené tésnosti prolozeni

Kvalitu dosazené tésnosti prolozeni lze posoudit prostfednictvim koeficientu
determinace, residudlni smérodatné odchylky a regresni diagnostiky. Stonasobek
koeficientu determinace se nazyva regresni rabat. K rozliSeni tésnosti proloZeni mezi
dvéma modely bylo navrzeno Akaikovo kritérium, které pro optimalni model dosahuje
minimalni hodnoty.

¢) Predik¢ni schopnost modelu
Kritéria posouzeni predikéni schopnosti modelu vychazeji z rozdé€leni bodi do
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dvou podskupin. Predik&ni schopnost modelu se pak vyjadfuje kritériem K, pfislusny
vzorec lze nalézt v odborné literatufe (6). Predikéni schopnost modelu je tim vyssi, ¢im
vic se hodnota K blizi k jedni¢ce.

d) Kvalita experimentalnich dat
Kvalita experimentalnich dat je urovana zregresni diagnostiky. K posouzeni

kvality experimentalnich dat se uziva analyzy rezidui a vlivnych bodd.

e) Spravnost navrzeného modelu
Pro spravnost navrzeného modelu navrhl White test C. Vzorec lze nalézt

v odborné literatufe (6). Pro spravny model je C=0.

f) Souhlas s pozadavky fyzikdlniho smyslu

Dilezitou podminkou je fyzikélni smysl nalezenych odhadd. Modely, které
nespliiuji tuto podminku jsou nepfijatelné, i kdyz budou preferovany na zakladé
statistickych kritérii.

S. Priklady reSeni nelineiarniho regresniho modelu
5.1  Nelinedrni regresni model vychazejici z fyzikalnich avah:

Propustnost zemin testovana na propustoméru s fizenym stupném syceni.
Propustnost materiald Ize charakterizovat koeficientem filtrace k, pfi¢emz plati vztah

k=v/

kde i- jehydraulicky spad [1]
v - filtra&ni rychlost zpGsobena spadem 1 [m/s]

Hydraulicky spad je definovan vztahem
i=hy/h

kde hy - je vySka vodniho sloupce [m]
h - vyska vzorku [m]

Filtra&ni rychlost je definovana rovnici
v=V,/Alt

kde Vy -je objem vody, ktery v Case t protece prufezem zkuSebniho t€lesa
[m? resp. ml.10]
A - priez zkuebniho télesa [m?]

Na zéklad€ vySe uvedeného je model pro vypocet koeficientu filtrace nasledujici:
Vw.h

k= ————— [ms!
t. hy. A
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5.2  Model empiricky

5.2.1 Zadani:

V uhli je stanovovan obsah popela a obsah beryllia. Mezi obsahem popela v uhli
a obsahem beryllia pfepoéteném na obsah beryllia v popelu uhli, byl hledan empiricky
model.

5.2.2 ReSeni:

Tvorba regresniho modelu je demonstrovana na vySe uvedeném empirickém
modelu, ktery fesi vztah mezi obsahem popela v uhli a obsahem beryllia v popelu uhli.
Vystupni zavisle proménnad y je obsah beryllia v popelu uhli a vstupni nezavisle
proménna x je obsah popela. Pii hledani zéavislosti mezi X a y bylo navrZzeno nékolik
modeli, které byly testovany softwarem ADSTAT 2.0, modelem nelinearni regrese.
V fefeni jsou uvedeny podminky, vybrany testovany model, vstupni data a graf
vybraného regresniho modelu. Vysledny model byl vybran ve smyslu kritérii pro vybér
vhodného regresniho modelu.

VSTUP

Ve vstupnich podminkach (1) je zadana hladina vyznamnost, informace o tom,
které parametry chceme zkonstantnit, pocet iteraci, tolerance pro parametry a tolerance
pro soudet &tvercti. Posledni tfi podminky maji vyznam pro ukonceni vypoctu. V tabulce
(2) je uveden zadany regresni model a v tabulce (3) vstupni data.

(1) PODMINKY:

Hladina vyznamnosti, alfa 0.050

Pocet bodu, n 24

Podet parametri, m 2

Pocet nezavislych proménnych 1

Minimalni zm&na RSC %1 1.000000E-01
Minimalni zména parametrt [%o] 0.000000E+00
Maximalni pocet iteraci 150

Kvantil Studentova rozdéleni t(1-alfa/2,n-m) 2.074

Kvantil Fisher-Snedecorova rozdéleni F(1-alfa,n,n-m) 2.063

Kvantil Chi*2 rozdéleni Chi"2(1-alfa,m) 5.991

(2) REGRESNi FUNKCE A POCATECNI ODHADY PARAMETRU:
Regresni funkce:p[ 1]+p[ 2]*(1/x1)
p[ 1] :p 1.000000E+00 p[ 2] :p 1.000000E+00
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(3) VSTUPNI DATA:
Cela matice editoru.
Poi.¢ 1 2 3 4 5
X 4.5800E+00 | 3.3500E+00 | 2.5000E+00 | 3.2400E+00 | 5.1300E+00
y 9.1700E+00 | 1.2540E+01 | 1.6400E+01 | 1.2350E+01 | 7.9900E~+00
Porad.c. 6 ¥ 8 9 10
X 8.1800E+00 | 8.9780E+01 | 4.5230E+01 | 5.5700E+00 | 2.9600E+01
y 5.0100E+00 | 4.6000E-01 | 9.3000E-01 | 7.5400E+00 | 1.3900E+00
Poiad.¢. 11 12 13 14 15
X 1.7400E+01 | 1.4540E+01 | 3.7800E+00 | 6.6700E+00 | 8.7300E~+00
y 2.3000E+00 | 2.0300E+00 | 1.0580E+01 | 6.3000E+00 | 4.7000E+00
Porad.& 16 17 18 19 20
X 5.7780E+01 | 2.1900E+00 | 1.8300E+00 | 2.3000E+00 | 2.1390E+01
y 6.9000E-01 | 1.8260E+01 | 2.5140E+01 | 1.7390E+01 | 1.9200E+00
Porad.¢. 21 22 23 24
X 5.3000E+00 | 1.5800E+00 | 8.9140E+01 | 7.6220E+01
y 8.4900E+00 | 2.8480E+01 | 4.7000E-01 | 5.4000E-01
VYSTUP:

Ve vystupni -tabulce (1) a (2) jsou uvedeny bodové a intervalové odhady

parametri s polo$itkami asymptotickych intervald spolehlivosti, vychyleni odhadu
a relativni vychyleni odhadu. Pokud je relativni vychyleni mensi nez 3%, lze tyto
intervaly akceptovat. '

(1) BODOVE ODHADY PARAMETRU:

Parametr Bodovy Smérodatna Absolutni Relativni
odhad odchylka Vychyleni vychyleni[ %]
p[1] -2.997429E-01 2.092577E-01 2.733299E-11 -9.118814E-09
p[ 2] 4.345761E+01 7.799269E-01 1.996661E-10 4.594503E-10

(2) INTERVALOVE ODHADY PARAMETRU:

Parametr Bodovy odhad Polovi¢ni délka konfiden¢niho int. spodtena z
délky poloos maxim
pl[ 1] -2.997429E-01 +- 4.214351E-01 +- 5.491454E-01
p[ 2] 4.345761E+01 +- 2.045441E+00 +- 2.046727E+00
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V tabulce (3) je uvedena korelaéni matice s prvky, které odpovidaji parovym
korelaénim koeficientim mezi odhady parametri.

(3) KORELACNI MATICE ODHADU:

x[1,i] x[2,i]
x[1,i] 1.0000E+00 -7.4423E-01
x[2,i] -7.4423E-01 1.0000E-+00

V tabulce (4) jsou uvedeny statistické charakteristiky regrese, zahrnujici
rezidualni soulet &tvercli, regresni rabat (tj. stonasobek Ctverce vicenasobného
korelaéniho koeficientu) a Akaikeho informaéni kritérium. Jak jiz bylo uvedeno
v kapitole 4, slouzi Akaikovo kritétium k rozliSeni t€snosti proloZeni mezi dv€ma
modely. Pro optimalni model dosahuje AIC minimalni hodnoty.

(4) STATISTICKE CHARAKTERISTIKY REGRESE:

Reziduélni soudet &tvercd, RSC 1.031442E+01
Regresni rabat, D2 [%] 9.929639E+01
Akaikeho informaéni kriterium, AIC -1.626826E+01

Dale je statistickym software provedena analyza rezidui podobn€ jako
u predchoziho prikladu linearni regrese, smérodatné odchylky méfeni, prvni &tyfi
momenty rezidui, rezidualni soudet &tverch a statistiky rezidui. Vysledky analyzy nejsou
v predlozeném ¢lanku uvedeny. V ramci statistického testovani je provedeno hledani
vlivnych bodf, podobné jako u linearni regrese. Vlivné body nebyly zjiStény, proto je
vysledny Eiselny soubor v ¢lanku vypustén.

5.2.3 Graficky vystup

Graficky vystup software Adstat 2.0 predklada 2 grafy. Na obr. 1 je zobrazena
zavislost rezidui na proménné y.,. Na obr. 2 je nakreslen prib&h regresniho modelu
spolu s konfidendnimi pasy a zadanymi daty. Mimé rozsifeny konfidencni pas pro
hodnoty x 30-80% popela je zpiisoben mensim poctem experimentalnich bodu.

5.2.4 ZAVER

Jako ukézka nelinearni regrese byly uvedeny dva piiklady. Prvni piiklad vychazi
z fyzikéalnich uvah pro hodnoceni propustnosti zemin. Vysledkem je vzorec pro vypocet
koeficientu filtrace.

Druhy ptiklad je empiricky. Cilem bylo nalézt matematicky vztah mezi obsahem
popela a obsahem beryllia pfepodteném na obsah beryllia v popelu uhli. Vycisleny
regresni vztah ma tvar:

y =-0.2997 + 4.3458/x,

kde x je obsah popela v uhli

y obsah beryllia v popelu uhli
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Obr. 2 Regresni model
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IV. ANALYZA ROZPTYLU

1. Zakladni pojmy analyzy rozptylu

Analyza rozptylu, oznaCovana také jako ANOVA, se v technické praxi pouZiva
bud’ jako samostatna technika nebo jako postup umoziujici analyzu zdroji variability
u linearnich statistickych modeli. Ze statistického hlediska Ize analyzu rozptylu chapat
jako specialni pfipad regresni analyzy, kde vysvétlujici promeénné maji pouze binarni
charakter a mohou nabyvat hodnot jen 0 nebo 1.

V piedlozeném ¢&lanku je ANOVA pouzita jako samostatnd technika, ktera
umoZzfiuje posouzeni vyznamnosti jednotlivych zdroji variability v datech. V technické
praxi se ANOVA uplatiiuje v ulohéch:

a) Urdeni vyznamnosti zpusobu pfipravy vzorku na vysledek analyzy resp.

experimentu.

b) Urceni vlivu typu piistroje, lidského faktoru a obsluhy na vysledek méfent.

c) Zpracovani riznych mezilaboratornich experimenti a urCeni vyznamnosti

rozdili mezi laboratofemi na vysledek analyz.

d) Zpracovani planovanych experimentl, u kterych se systematicky sleduje vliv

rozliénych faktort (teploty, ¢asu, koncentrace a dalSich) na vysledek reakce ¢i
analyzy.

Podstatou analyzy rozptylu je rozklad celkového rozptylu dat na slozky objasnéné
(znamé zdroje variability) a slozku neobjasnénou, o niz se pfedpoklada, Ze je ndhodna.

Terminologie ANOVY je pon€kud specialni. Jsou rozliSovany kvalitativni
a kvantitativni faktory. Za kvalitativni faktor lze napfiklad povaZzovat zpisob piipravy
vzorku. Kvantitativni faktor je napfiklad velikost upraveného vzorku nebo dalsi fyzikalni
a chemické veli¢iny. Jednotlivé faktory se vyskytuji na urCitych #rovmich, které se
oznaduji jako zpracovdni. Tyto Girovn€ mohou byt opét kvantitativni nebo kvalitativni.
Zdrojem variability vysledki méfeni jsou jednotlivé trovné faktoru.

Utelem analyzy rozptylu je testovani shody jednotlivych Girovni, neboli nulové
hypotézy. Pokud jsou zji§tovany pouze rozdily mezi danymi Grovnémi, napf. mezi
zpusoby pfipravy vzorku, jde o modely s pevnymi efekty. Pokud jsou jednotlivé trovné
pouze vybérem z kone¢ného ¢i nekoneéného souboru, jde o modely s ndhodnymi
efekty. O model s pevnymi efekty ptjde, napf. bude-li vySetfovan vliv pfipravy vzorku na
vysledek analyzy. O model s nahodnymi efekty jde tehdy, je-li napf. zjistovan vliv
pramérné velikosti &astic vzorku na vysledek analyzy.

Pro volbu typu faktor je mozné pouzit nasledujicich orientacnich pravidel:

a) typické faktory, které odpovidaji pevnym faktorim, jsou obvykle zplsob
zpracovani, typ méficiho pfistroje, analytickd metoda, druh chemikalie, typ
suroviny apod.

b) typické faktory, které odpovidaji ndhodnym faktorim, jsou laboratore,
pracovnici, dny apod.

Je-li sledovan pouze jeden faktor, pak jde o jednofaktorovou analyzu rozptylu

neboli tfid&ni podle jednoho faktoru. Casto se viak sleduje i vliv nékolika faktord, pak
jde o vicefaktorovou analyzu rozptylu.
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Pro vlastni zpracovani modeld analyzy rozptylu je dilezité, zda je pfi vSech
kombinacich faktord realizovan stejny poet méfeni, resp. opakovéni, ¢ nikoliv.
Kombinace urovni jednotlivych faktord se oznaluje jako cela. Pro stejny pocet
opakovani se experimenty oznaduji jako vyvdZené a pro nestejny poCet opakovani jako
nevyvdiené. Z hlediska jednoduchosti zpracovani a interpretace je vyhodné&jsi pracovat
S Vyvazenymi experimenty.

2. Jednofaktorova analyza rozptylu

V nejjednodusiim pripadé se predpoklada, ze na nédhodnou veliinu ma vliv
pouze jeden faktor. Cilem jednoduchého tiidéni je predevsim testovani, zda jsou efekty
a; nulové, tedy zda jednotlivé urovné daného faktoru vedou ke statisticky nevyznamnym
rozdilim ve vysledcich, coZ znamena, Ze je zkoumén vliv faktoru na vysledek
experimentu. Nulova hypotéza Ho: o; = 0, i=1,..., K, se ov&€fuje proti alternativni
hypotéze Ha: o4 # 0, i = 1,..., K. Pro posouzeni vyznamnosti efektu se vyuZiva testovaci
charakteristika F., kter4 je porovnavéna s kvantilem Fi,. Vyjde-li F. vétsi nez kvantil, je
nutné na hlading vyznamnosti o nulovou hypotézu Ho vyloucit a efekty povazovat za
nenulové, neboli vyznamné.

Vlastni analyza rozptylu zavisi na tom, zda jde o modely spevnymi nebo
nahodnymi efekty. U modelt s néhodnymi efekty se mize projevit poruseni pfedpokladu
normality u nahodnych veli¢in. Indikaci normality Ize provadét s vyuZzitim rankitovych
grafi pro rezidua. Podobné jako u model s pevnymi efekty Ize 1 u modeld s nahodnymi
efekty zlepSovat normalitu vhodnou transformaci dat. Problémem je vSak hodnoceni
rozptyl v transformovaném méfitku. Pokud neni splnén predpoklad normality, je mozné
pouzit k uréeni odhadu rozptylu a testovani jeho vyznamnosti techniku Jackknife.

3. Dvoufaktorova analyza rozptylu

Pt dvoufaktorové analyze rozptylu se provadi experimenty na riiznych urovnich
dvou faktord, A a B. Kombinace tirovni faktord tvofi typickou miizkovou strukturu,
jejimz elementem je tzv. cela. V kazdé cele je obecné n;; opakovani. Casto se Ize setkat
s pfipadem bez opakovani, kdy je vkazde cele pouze jedine opakovani. Krome
fadkovych a sloupcovych efektli se zde vyskytuje také interakéni Clen, ktery je
diisledkem riiznych kombinaci sloupcovych a fadkovych efekti.

Je-li v cele jedno pozorovani, je vyhodné pouziti Tukeyova modelu interakce.
Slozit&jsi jsou Fddkové linedrni modely interakci nebo sloupcové linedrni. Kompletngjsi
je aditivné-multiplikativni model. Tukeyho model interakce vyuZiva statistik Fap, Fa
a Fp. Testuje se nulova hypotéza proti alternativni.

V chemické praxi je nejuzivangjsi model s pevnymi efekty. Umoziiuje urCit vliv
dvou faktor na vysledek chemické analyzy. Podle poftu opakovéni v jednotlivych
celach Ize Glohy dvojného tfidéni rozlisit. Je-li v kazdé cele jedna hodnota, jde o modely
pro pripad bez opakovini méFeni. Pii testovani je provedena Uplna analyza rozptylu
s interakci Tukeyova typu. Pro odhad parametri je mozné pouzit bud” vztahl
vychazejicich z predpokladli normality nebo robustni techniky medianového vyhlazeni.
Kromé testd vyznamnosti se urfuje vhodnost mocninné transformace pro eliminaci
neaditivity a ovéfuje se ptedpoklad normality. Indikace aditivity se provadi pomoci grafu.
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Tvoii-li body ndhodny obrazec, pak se jedna o aditivitu, je-li obrazec pfiblizn€ linearni,
pak se jedna o eliminovatelnou neaditivitu. Vhodna mocninna transformace pro-eliminaci
neaditivity se ur&i ze smérnice regresni pfimky.

Je-li ve viech celach stejny pocet opakovani, jedna se o wyvdZeny model. Pti
testovani nulové hypotézy proti alternativni se opét vyuZiva statistik Fap, Fa a Fp.
Je hledan optimalni model analyzy rozptylu, odhadovany jeho parametry a provedeny
testy vyznamnosti. Je ov&fovina vhodnost transformace dat a normality rezidui.

Vyhodou vyvazenych experimentd je, Ze jednotlivé slozky modeld analyzy rozptylu jsou
vz4jemné nezavislé.

Pro nevyviiené modely obecné plati, ze v kazdé cele je jiny pocet opakovani.
Pro nevyvazené experimenty je rovnéz hledan optimalni model analyzy rozptyly,

odhadnuty jeho parametry a provedeny testy vyznamnosti. Je ovéfovana vhodnost
logaritmické transformace a normalita rezidui.

4. Ptiklady ANOVY

4.1  Jednofaktorova analyza: Vliv teploty na délkovou zménu palenim
cihlafskych surovin

Zadani: Pii teplot&¢ 950, 1000 a 1050°C byla sledovina délkova zména pélenim
zkudebnich tglisek vytvofenych z tésta cihlafské suroviny. Na hladiné vyznamnosti
a = 0.05 je ov&fovano, zda ma teplota vypalu vliv na délkovou zménu télisek.

ReSeni: Data byla zpracovana jednofaktorovou analyzou rozptylu s pevnymi efekty.
VSTUP
(1) DATA A PODMINKY:

Hladina vyznamnosti alfa 0.050
Transformace Ne
Podet urovni faktoru A, k 3
Cel. Vel. n=n[1] +n[2] + ... + n[k] 27

Ve vstupnich podminkach (1) je zadana hladina vyznamnosti, ktera se pouziva pii
viech testech. Dale se zadava zda budou data logaritmicky transformovana ¢i nikoliv.
Potieba logaritmické transformace vychdzi na zéklad€ grafu zavislosti smérodatné
odchylky na priméru. Poéet tirovni znamené v pfedlozeném piikladé tfi rizné teploty.
Celkovy po&et namé&fenych hodnot je 27. V nasledujici tabulce (2) je uvedena celd
matice, kde jsou data sefazena podle jednotlivych arovni. V prvnim fadku je uveden
maximalni pocet opakovani, tj. 9 pro kazdou trover, a po€et urovni = pocet sloupci.
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(2) OPAKOVANA POZOROVANI NA RUZNYCH UROVNICH FAKTORU A:

Cela matice editoru.

Urovné efektu A
Opakovani Velikost
n[1]=9 n[2]=9 n[3]=9
1 1.3000E+00 6.1000E+00 9.8000E+00
2 3.1000E+00 7.8000E+00 1.0300E+01
3 1.6000E+00 7.3000E+00 9.9000E+00
4 6.4000E+00 8.4000E+00 1.1200E+01
5 4.2000E+00 5.5000E+00 1.1200E+01
6 3.6000E+00 7.9000E+00 1.0700E+01
7 6.1000E+00 7.5000E+00 1.0800E+01
8 6.5000E+00 8.0000E+00 1.0200E+01
9 5.0000E+00 8.7000E+00 1.0900E+01
VYSTUP
(1) PRUMERY A EFEKTY UROVNI:
Celkovy prumér = 7.4074E+00
Rezidualni rozptyl = 1.7534E+00
Uroveri Prumér Efekt H;;
1 4.2000E+00 -3.2074E+00 1.1111E-01
2 7.4667E+00 5.9259E-02 1.1111E-01
3 | 1.0556E+01 3.1481E+00 | 1 1111E-01

V odstavei (1) vystupu software Adstat 2.0 jsou uvedeny odhady parametrti
jednotlivych trovni. V dalsim odstavci (2) jsou uvedeny vysledky analyzy vlivnych bodd
z Jakknife rezidui a extrémi z prvka projekéni matice Hj;.

(2) DETEKCE VLIVNYCH BODU (vybotujici a odlehlé body)

Odlehlé Vybocujici

Zadné Z4dné
Z tabulky analyzy rozptylu (3) je ziejmé, Ze nulova hypotéza byla zamitnuta,
efekty Ize povazovat za nenulové, neboli vyznamné. Teplota vypalu ma tedy vliv na
délkovou zménu vypalovanych zkuSebnich télisek. Stejné zavéry lze ucinit na zakladé
Scheffeho procedury, viz tab (4).

Zaveér
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Zdroj Stupné Soudet Pramérny | Testovaci | Zavér Spocteni
rozptylu | volnosti Ctvercu Ctverec kriterium H, je hlad.vyz.
mezi k-1=2 | 1.8182E+02 | 9.0908E+01 51.846 | Zamitnuta 0.000
darovnémi
rezidua | n-k=24 | 4.2082E+01 1.7534E+00 - - -
celkovy | n-1=26 | 2.2390E+02 | 8.6115E+00 - - -
(4) VICENASOBNA POROVNANI (Sheffeho procedura):
Hypotéza | Pramérny provy Meze konfiden¢niho intervalu Zaver
H, rozdil
dolni horni
Pl1=P2 -3.267 -4.895 -1.638 Zamitnuta
P1=P3 -6.356 -7.984 -4.727 Zamitnuta
P2=P3 -3.089 -4.717 -1.460 Zamitnuta

(5) ZKOUSKA TRANSFORMACE:

Korelaéni koeficientent R : -0.998

(Pokud je R blizké nule neni transformace nutna.)
ProtoZe se R bliZi jedné, byla provedena logaritmicka transformace. Vysledek je uveden
v tabulce (6). Testovaci kritérium nabyva hodnoty 20.624 a je tedy vysSi nez kvantil
F1.«(K-1,N-1), ktery nabyva hodnoty 3.403. Zavéry jsou shodné jako pro zpracovani dat
bez transformace.

(6) TABULKA ANOVA PO TRANSFORMACT:

Hy: Efekty faktoru A jsou nulové, Ha: ...

Kvantil F(1-alfa k-1,n-k) = 3.403

nejsou nulové

Zdroj Stupné Soucet Priumérny | Testovaci | Zavér Spoctena
rozptylu | volnosti Etvercu Ctverec kriterium Hp je hlad.vyz.
) mezi k-1=2 5.1635E+00 | 2.5818E+00 20.624 | Zamitnuta 0.000

urovnémi
rezidua | a-k=24 | 3.0044E+00 | 1.2518E-01 - - -
celkovy | a-1=26 | 8.1679E+00 3.1415E-01 - - -
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Zavér: Testovaci kritérium F. = 51.846 je vyssi nez kvantil Fio(K-1,N-1) = 3.403,
nulovou hypotézu Hy Ize zamitnout, teplota vypalu ma tedy vliv na délkovou zmeénu
vypalovanych zku$ebnich télisek.

PHi testovani nebyly zjistény vybolujici a odlehlé body. Prilozeny Q-Q graf na
obr.1 je konstruovan na zakladé Jackknife rezidui pro ovéfeni jejich normality. Pfiblizné
line4rni zavislost se povaZuje za potvrzeni normality. Ve vystupu v Adstatu v bodé (5) je
provedena zkouska transformace. Je-li R blizké nule, pak neni transformace nutna.
Protoze se R blizi jedné, byla provedena logaritmicka transformace, bod (6). Protoze
testovaci kritérium F. je vy$si nez kvantil Fi.o(K-1,N-1), jsou tedy zavéry shodné se
zavéry uvedenymi v piedchozim odstavci.

4.2  Dvoufaktorova analyza - ANOVA pro dvojné tfidéni s pevnymi efekty se
stejnym poétem pozorovani: Vliv laboratoie a metody na stanoveni obsahu
siry v uhli

Zadani: Byl vySetfovan obsah veskeré siry vuhli dvéma nezavislymi metodami v 5ti
laboratofich. Kazdé méFeni bylo dvakrat opakovano. Na hladiné€ vyznamnosti o = 0.05 je
vySetfovano, zda obsah siry vuhli je ovlivnén analytickou metodou (faktor A) nebo
laboratofi (faktor B), kde byla analyza provedena.

Reseni:

VSTUP

(1) DATA A PODMINKY:
Hladina vyznamnosti alfa 0.050
Transformace Ne

N

Podet trovni parametru A, n

Pocet urovni parametri B, m

[ BN

Pocet opakovani v jedné buiice, 0

Ve vstupnich podminkach (1) je zadana hladina vyznamnosti stejn€ jako
v predchozim piiklad&. Déle se zadava zda budou data logaritmicky transformovana ¢
nikoliv. Potfeba logaritmické transformace vychazi na zakladé grafu zavislosti
smérodatné odchylky na priméru. Polet Grovni znamené v predloZzeném prikladé tfi
rizné teploty. Celkovy podet naméfenych hodnot je 27. V nasledujici tabulce (2) je
uvedena cel4 matice, kde jsou data sefazena podle jednotlivych Grovni.
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(2) MERENT NA ROZNYCH UROVNICH FAKTORU A ,B:

Cela matice editoru. (pro kazdou uroveii faktori A a B je méfeni 2 krat opakovano)

Urovné Urovné faktoru B
Faktoru A
1 2 3 4 5 6 7
1 1.0700E-01 | 1.2700E-01 | 1.1500E-01 | 1.0800E-01 | 9.7000E-02 | 1.1400E-01 | 1.5500E-01
1.0500E-01 | 1.2200E-01 | 1.1200E-01 | 1.0800E-01 | 9.6000E-02 | 1.1900E-01 | 1.4500E-01
2 1.0500E-01 | 1.2700E-01 | 1.0900E-01 } 1.1700E-01 | 1.1000E-01 | 1.1600E-01 | 1.6400E-01
1.0300E-01 | 1.2400E-01 | 1.1100E-01 | 1.1500E-01 | 9.7000E-02 | 1.2200E-01 | 1.6000E-01
VYSTUP
(1) PROUMERY A UROVNE EFEKTU:
Celkovy primér = 1.1821E-01
Reziduélni rozptyl = 1.4500E-05
FAKTOR A: FAKTOR B:
Uroveii Pramér Efekt Urovei Prumér Efekt
1 1.1643E-01 | -1.7857E-03 1 1.0500E-01 | -1.3214E-02
2 1.2000E-01 | 1.7857E-03 2 1.2500E-01 | 6.7857E-03
3 1.1175E-01 | -6.4643E-03
4 1.1200E-01 | -6.2143E-03
5 1.0000E-01 | -1.8214E-02
A 1 1775E-01 -4 A42QF-N4
7 1.5600E-01 | 3.7786E-02

Ve vysledkovém souboru v tabulce (1) jsou obsazeny odhady rfadkovych efekti
(alfa) a sloupcovych efekti (beta), celkovy prumér a rezidualni rozptyl. V tabulce (2) je
uvedena analyza rozptylu. Z vysledkd je ziejmé, Ze testovaci kritérium pro faktor A ma
hodnotu 6.158 a tedy je vétsi neZ kvantil F, ktery nabyva hodnoty 4.600. Nulova
hypotéza je tedy zamitnuta. Lze tedy konstatovat, Ze faktor A je statisticky vyznamny
a analytickd metoda mé4 vliv na stanoveni obsahu siry vuhli. Testovaci kritérium pro
faktor B nabyvéa hodnoty 94.750 a rovnéz vétsi nez kvantil F, ktery ma hodnotu 2.848.
Faktor B je tedy rovn&Z statisticky vyznamny a laboratof ma vliv na stanoveni obsahu
siry. Interakce obou vySetfovanych faktori A a B je naopak statisticky nevyznamna,

protoZe testovaci kritérium je mensi nez kvantil.
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(2) TABULKA ANOVA PRO MODEL S INTERAKCEMI FAKTORU A, B:
Hy: Efekty faktoru A jsou nulové, Ha: ... nejsou nulové
Kvantil F(1-alfa,n-1,mn(o-1) = 4.600

H,: Efekty faktoru B jsou nulové, Hy: ... nejsou nulové

Kvantil F(1-alfa,m-1,mn(o-1) = 2.848
Ho: Interakce I je nulova, Ha: ... neni nulova
Kvantil F(1-alfa,(n-1)(m-1),nm(o0-1)) = 2.848
(Zde I znamena efekty interakci A a B dohromady)

Zdroj Stupné Souéet | Pramérny | Testovaci Zavér Spodtena
rozptylu volnosti Ctvercu ¢tverec | kriterium Hp je hlad.vyz.
mezi n-1=1 8.9286E-05 | 8.9286E-05 - 6.158 Zamitnuta 0.026
urovnémi A
mezi m-1=6 8.2432E-03 | 1.3739E-03 94.750 Zamitnuta 0.000
urovnémi B
interakce | (n-1)(m-1)=6 | 1.9121E-04 | 3.1869E-05 | _ 2.198 Akceptovana |  0.105
rezidua mn(o-1) =49 | 2.0300E-04 | 1.4500E-05
celkovy mno-1=27 | 8.7267E-03 | 3.2321E-04

Z tabulky (3) je zfejmé, Ze korelaéni koeficient se blizi nule a logaritmickou
transformaci neni nutné provadet.

3) ZKOUSKA TRANSFORMACE:
Korelaéni koeficient, R : 0.287

(Pokud je R blizké nule neni transformace nutna.)

Zavér: Testovaci kritéria pro faktor A i B jsou vyssi neZ jejich kvantily, coz znamena, Ze
nulovou hypotézu lze zamitnout a oba faktory jsou statisticky vyznamné. Tyto zavéry
v praxi znamenaji, Ze jak zvolena analyticka metoda, tak 1 testujici laboratof maji vliv na
stanoveni obsahu siry v uhli.

Piilozeny Q-Q graf na obr. 2 je konstruovan na zaklad€ Jackknife rezidui pro
ovéfeni jejich normality. Ptiblizné linearni zavislost lze povaZovat za potvrzeni tohoto
predpokladu. Graf transformace na obr. 3 nevykazuje linearni zévislost a potvrzuje, Ze
neni nutné provadét logaritmickou transformaci.
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V. VICEROZMERNA STATISTICKA ANALYZA

Vicerozmémou statistickou analyzou jsou feSeny problémy, kdy u souboru
objekti je sledovéano vice neZ jedna proménnd. V piedloZené praci byla data zpracovana
programovym systémem Statgraphics modulem Vicerozmérné metody. Z tohoto modulu
byla pouzita analyza hlavnich komponent, shlukova analyza a grafické metody
k vizualnimu posouzeni podobnosti vicerozmérnych objekta.

Analyza hlavnich komponent

Ve vicerozmérné statistice jsou vychozi datovou formou tzv. zdrojové matice,
unich? predstavuji fadky objekty (méfené vzorky) a sloupce méfenou vlastnost
(vysledek laboratorni zkousky). Pfi velkém poctu méfenych viastnosti i objektd je
pomé&mé obtizna interpretace. Pro zjednoduSeni analyzy a usnadnéni interpretace je
analyzou hlavnich komponent zkouméana moZznost nahrazeni velkého po&tu méfenych
vlastnosti mensim poétem, aniz by doslo k podstatné ztrat& informace. Analyza hlavnich
komponent je metoda, kterd se pokousi nalézt skryté (latentni) proménné, oznacované
jako hlavni komponenty; jez maximalné reprezentuji plivodni proménné.

ProtoZe plati, Ze soudet rozptyld vSech hlavnich komponent je roven souctu
rozptyld vstupujicich proménnych, lze z podild rozptyli jednotlivych hlavnich
komponent usuzovat na &ast celkové variability vstupujicich proménnych vysvétlenou
piislusnou hlavni komponentou. Jestlize soucet prvnich (nejvysSich) x téchto podild je
dostateéné blizky jedné, vétinou se poZzaduje kolem 0,85-0,9, stali vzit v uvahu téchto
prvnich x hlavnich komponent pro vysvétleni chovani pivodnich proménnych.

Programovy systém Statgraphics metody hlavnich komponent predklada
v zakladnim  vystupu tabulku, kde jsou uvedena procenta variability vysvétlena
jednotlivymi hlavnimi komponentami. V grafickych vystupech je graf komponentnich
vah, ktery zobrazuje komponentni vahy pro prvni dvé hlavni komponenty. Dalsi graf,
bodovy diagram, zobrazuje komponentni skore, tj. hodnoty prvnich dvou hlavnich
komponent u Jednotllvych objektq, navzajem DVO_]ny graf je kombinaci obou

Vo1 x7 Moy oonat B TN merat Loy Qintrranmhina 1o moldet

Auu\./uubu.au Au.Lu v ViDUiiiywii VyOoiLupivivii Oy Oiwaiie LA LRA Wi idew Pitiiveen
y b ¥ J (e o

charakteristicka &isla pouZité vybérové kovarianéni nebo korela¢ni matice, tedy rozptyly
jednotlivych komponent. Jednim z dalSich vystupd je matice komponentnich vah
(koeficientli line4rni kombinace). Pocet fadku i sloupcl je roven poctu proménnych.
Jednotlivé sloupce této matice predstavuji charakteristické vektory, které odpovidaji
prislusnym charakteristickym &islim (rozptylim komponent). Poslednim z Ciselnych
vystupli jsou hodnoty hlavnich komponent jednotlivych objekti. U vysledné matice je
pocet fadkt roven podtu objektt a podet sloupcii potu proménnych.

2 Shlukova analyza

Shlukova analyza je metoda, ktera se zabyvda zkoumanim podobnosti
vicerozmérnych objektl a jejich rozttidénim do shlukid. Cilem je v podstaté dosahnout
stavu, kdy objekty uvnitf shluku jsou si co nejvice podobné a s objekty z riiznych shlukl
co nejméné. Podle zpiisobu shlukovéni se metody shlukové analyzy déli na hierarchické
a nehierarchické.

Hierarchické postupy jsou zalozeny na postupném spojovani objektd a jejich
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shlukdi do dalsich (vétsich) shluki. Hierarchické metody se dale déli na aglomerativni
a divizni. PHi aglomerativnich postupech shlukovani se vychéazi od jednotlivych objekti,
které se postupné seskupuji do t¥id. ke konenému stavu, tj. spojeni vSech objektl do
jedné tfidy. Divizni postup je obraceny. Pfi tomto postupu se vychazi z mnoziny vSech
objekti jako jediné tfidy a jejim postupnym délenim se ziska systém tfid, aZ se skonli ve
stadiu jednotlivych objektl. Vysledky hierarchickych shlukovacich postupii lze zachytit
graficky v podobé€ stromu - dendogramu.

Mezi aglomerativni hierarchické metody shlukové analyzy patfi metoda primérné
vazby, kdy se vzdalenost dvou shlukil pocita jako priimér z moZnych mezishlukovych
vzdalenosti objektd. U metody nejbliz§iho souseda je kritériem pro spojovani shluki
minimum z moznych mezishlukovych vzdalenosti objektd. Na opacném principu je
zalozena metoda nejvzdalengjsiho souseda, ktera pocitd vzdalenost dvou shluki jako
maximum z moZznych mezishlukovych vzdalenosti objektl. DalSi metodou je centroidni
metoda, pfi niZ se vzdalenost shlukl potita jako euklidovska vzdalenost jejich centroidi.
medidnova metoda je v podstaté vylepSeni centroidni metody, nebot’ se snazi odstranit
rozdilné-vahy; které centroidni metoda dava rizné velkym shlukiim. Mezi divizni metody
patii rozklad nejkrat§i neuzaviené cesty a MacNaughtonova-Smithova metoda.

V nehierarchickych shlukovacich postupech je pocet tiid zadan predem, i kdyZ se
v prubéhu vypoltu mize zménit. Zistane-li poCet tfid zachovan, jde o nehierarchické
metody s konstantnim po&tem shlukd, v opa¢ném pripad€ to jsou nehierarchické metody
s optimalizovanym po&tem shlukd. Nehierarchické metody lze rozdé&lit na dvé zékladni
varianty, optimalizaéni metodu a analyzu modi. Analyza modd patfi mezi metody, pfi
kterych jsou hledany rozklady do tid. Ttidy jsou mista se zvySenou koncentraci objektt.
Optimaliza&ni nehierarchické hledaji optimalni rozklad pfifazovéanim objektl z tfidy do
tfidy s cilem minimalizovat nebo maximalizovat néjakou charakteristiku kvality rozklada.

Pii zpracovani dat v této praci byla pouzita nehierarchickd metoda typickych
bodl (Seeded) systému- Statgraphics. Pfi pouZiti této metody jsou na zaklad€é veécnych
znalosti zadany objekty, které jsou typickymi pifedstaviteli nové vytvofenych shlukd,
a systém rozdé&li objekty do shlukd podle jejich euklidovské vzdalenosti od t&chto
typickych objektu.

3. Grafické metody

Grafické metody slouzi pro vizuadlni posouzeni podobnosti vicerozmérnych
objektd. Jednotlivé proménné jsou znazornény s ohledem na jejich konkrétni hodnoty do
uréitych geometrickych tvard nebo symbold. Vlastnosti dat se posuzuji s ohledem na
vizualni rozdily mezi symboly. Mezi zakladni typy symboll patif profily, polygony, tvafe,
kiivky a stromy. Profily pfedstavuji dvourozmérné zobrazeni m-rozmérnych dat. Kazdy
bod je charakterizovan vertikalnimi iseCkami nebo sloupci. Profil pak vznika spojenim
koncovych bodid téchto uselek nebo sloupcd. Tvare charakterizuji kazdou slozku x;;
vektoru x; néakym znakem, ktery je soucasti schematizované tvare. Kfivky vyuZzivaji
transformace kazdého bodu x; na spojitou kiivku, ktera je linedrni kombinaci vSech jeho
sloZek. Stromy jsou vhodné pro piipady, kdy je poCet slozek vektoru x veliky. Jednotlive
sloZky x; pfedstavuji délku vétvi schematického stromu. Polygony jsou vlastn€ profily
v polarnich soufadnicich. Ka?da slozka x; vektoru x; odpovidd délce paprsku
vychazejiciho z jednoho stfedu. Paprsky jsou rozmistény ve stejnych vzdalenostech na
kruZznici.
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V systému Statgraphics je k dispozici graf slunecnich paprskil (Sun Ray Plot)
a hv&zdicovy symbolicky graf (Star Symbol Plot). Pfi vyuziti metody Sun Ray Plot je
systémem nakreslena pro kazdy objekt hvézdice, tzv. polygon, ktery je tvofen z paprsku
spojenych ve spoledném bodé a usedek mezi paprsky. Stfed kaZdého paprsku predstavuje
primér prisluiné proménné a jeho délka odpovida 2n nasobku smérodatné odchylky této
proménné. Polygon grafické metody Star Symbol Plot je tvoren z paprsku, které se pro
kazdy objekt spojuji v centralnim bod&. Stejn& sméfujici paprsky u rlznych objektd
datového souboru se lisi svoji délkou. Nejdelsi paprsek reprezentuje nejvy3Si hodnotu
pfisluiné proménné a naopak nejkratsi paprsek informuje, Ze u daného objektu nabyva
prislusnd promé&nna nejmensi hodnoty z celého souboru.

4. Priklad vicerozmérné statistické analyzy

Zadani: V ramci technologického priizkumu v severoCeské panvi byl proveden odbér
vzorkd terciérnich jilovel ze &tyf priizkumnych vrtd V1, V2, V3 a V4 za GCelem zjisténi
jejich pouzitelnosti v keramické vyrob&. Odebrané vzorky byly dopraveny do laboratore
a na nich provedeny. zkousky: silikatova analyza vCetné ztraty Zihanim, zrnitostni
zkouska, stanoveni optimalni- vlhkosti keramického tésta, délkové zmény suSenim
a pevnost v ohybu po vysuSeni. Zkousky byly provedeny dle pfisluSnych normovanych
metodik.

Datovy soubor:

Na zékladé provedenych laboratornich zkouSek je v tab.1 zpracovan piehled
vysledkd pro jednotlivé vzorky viech &tyf vrtl. Protoze alkalické kovy, tj. Na a K, jsou
v jilovcich severodeské panve obsaZeny v Ziveich a prvky alkalickych zemin, tj. Ca a Mg,
v karbonatech, pripadné v jilovych mineralech v pomé&mé malém mnoZstvi, byly pfi
vyhodnoceni oxidy alkalickych kovii Na,O a K>O a oxidy prvki alkalickych zemin CaO
a MgO pouzity v podobé jejich souctu.

ReSeni:
le AMalYLa RERaE v ERavaR i'\iiiii}ii}iiciii

Metodou hlavnich komponent byl zpracovan vySe uvedeny soubor dat.
V nésledujici tab. 2 jsou uvedeny vysledky analyzy hlavnich komponent. V' prvnim
sloupci jsou uvedena pofadova &isla jednotlivych komponent. Ve druhém sloupci jsou
uvedena procenta variability vysvétlena jednotlivymi hlavnimi komponentami, tj. podily
rozptyld jednotlivych hlavnich komponent na celkové variabilité, v pofadi od nejvyssiho
k nejniz§imu. Ve tietim sloupci jsou tytéZ podily uvedeny kumulované a lze z nich urcit
optimélni podet komponent. Oby&ejné se poZzaduje, aby soucet prvnich nejvysSich
komponent mél 85 - 92 %. Z tab. 2 vyplyvé, Ze tento ptedpoklad spliiuje 5 - 6 hlavnich
komponent. Na obr. 1 - 3 jsou znazornény grafy hlavnich komponent.
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Principal Components Analysis
Component Percent of Cumulative
Number Variance Percentage

1 47.46525 47.46525
2 16.39470 63.85995
3 11.95133 75.81128
4 8.09601 83.90729
5 4.86966 88.77695
6 429131 93.06826
7 3.20702 96.27527
8 1.73000 98.00527
9 1.27612 99.28139
10 0.68424 99.96563
11 0.03437 100.00000

V tab. 3 jsou uvedeny komponentni vahy pro prvni dvé hlavni komponenty a na
obr. 1 je znazornén graf komponentnich vah pro prvni dvé hlavni komponenty
u jednotlivych proménnych vstupujicich do analyzy.

Tab. 3: Komponentni-vihy (koeficienty lineirni kombinace) pro prvni dvé hlavni

komponenty

Cislo komponentni vahy Cislo Komponentni vahy

objektu |pro 1. hlavni |pro 2. hlavni objektu pro 1. hlavni | pro 2. hlavni

komponentu |komponentu komponentu | komponentu

1 0.36939 -0.165576 7 0.285145 -0.199643
2 0.339967 -0.277312 8 0.277501 0.193265
3 0.305127 -0.266153 9 -0.418784 -0.0609797
4 0.325519 0.222766 10 0.218275 0.601643
5 0.222033 0.425989 11 0.327449 -0.324889
6 0.105111 0.212836
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Obr. 1 Graf komponentnich vah pro prvni dvé hlavni komponenty

Na obr. 2 je znazornén bodovy diagram, ktery zobrazuje komponentni skore, t).
hodnoty prvnich dvou hlavnich komponent u jednotlivych objektd. V Ciselném vystupu
systému Statgraphics modulu Vicerozméma data byly uloZeny hodnoty hlavnich
komponent jednotlivych objektd. V tab. 4 jsou uvedeny hodnoty prvnich dvou hlavnich
komponent jednotlivych objektt.
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Plot of First Two Prindpd Components
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Obr. 2 Bodovy diagram klasifikuje data dle prvnich dvou hlavnich komponent

Z grafu na obr. 2 je zifejmé, Ze lze soubor testovanych objekti rozdélit na
4 shluky. Nejpocetnéjsi shluk tvofi skupina objektl, které jsou na grafu bez oznaleni,
vyjma objektu 50. Tento objekt je dalSimi metodami zafazen do jiného shluku
(viz kapitola 4.2 a 4.3). Druhy shluk predstavuje skupina objekti €. 17, 18, 49, 62 - 66,
68 - 70, 72 a 73. Treti shluk tvofi Ctyfi objekty €. 16, 51, 67 a 71. Zcela ojedinéle je
v grafu na obr. 2 umistén objekt &. 19, ktery predstavuje Ctvrty shluk. Prvni shluk tvofi
objekty resp. vzorky jilovca, které byly odebrany ve svrchni €asti vrtd V1, V2, V3 a V4.
Ze spodni &asti uvedenych vrtl jsou vzorky jilovel, které byly zafazeny do shluku 2, 3
a4. Vzhledem k poloze vzorki ve vrtech lze ocekavat 1 odlisné chemické
a technologické vlastnosti vzorkt. Svrchni €asti vrtl jsou tvofeny jilovcem s vySSim
obsahem Fe,0; neZ v materidlech spodni &asti vrtl, dale byla ve vzorcich svrchni &asti
vrtd zjiSténa i vys§i ztrata zihanim, vyS$S$i optimalni vlihkost keramického tésta, vétsi
hodnota délkovych zmén suSenim i vy3§i hodnota pevnosti v ohybu po vysuSeni neZ maji
vzorky ze spodni Casti vrtd.

83



Zpravodaj Hnédé¢ uhli I11/98

Na obr. 3 je znazornén dvojny graf, ktery kombinuje oba pfedchozi grafy. Body
predstavuji komponentni skére jednotlivych objektil. Primky spojujici se v bodé (0,0)
predstavuji pGvodni proménné, délka kazdé piimky je uméma svému prispévku
k prvnim dvéma hlavnim komponentam.

Z grafického vystupu na obr. 3 vyplyva, Ze za hlavni komponenty lze povazovat
obsah oxidu Si, Al Fe, ztratu zthanim, optimalni vlhkost a velikost zrn pod 2 pum
oznagenou zrn 1. Ostatni komponenty nebudou mit pro hodnoceni suroviny zasadni
vyznam, protoZe jsou v korelaci s n&kterymi proménnymi. Proménna ,alkalie” je
vkorelaci s proménnou ,ztrata“, proménné ,DS“ a ,PEVSUS® jsou v korelaci
s proménnou ,,vlhkost“. Lze uvazovat 1 proménnou ,Zzm2“ za dostatené nezavislou,
a proto i dilezitou. Data byla standardizovana, protoZe nejsou vyjadiena ve stejnych
jednotkach.

Biplot for FirstTwo Prindpd Components
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Obr. 3 Dvojny graf pFinasi kombinaci grafu komponentnich vah a bodového
diagramu
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2. Shlukova analyza

Shlukovou analyzou byla zkoumana podobnost vicerozmérnych objekti.
Na zakladé uvedeného byl datovy soubor zpracovan nehierarchickou metodou typickych
vzorkd (metoda Seeded). Vzorky &.3, 66, 67 a 19 byly zadany jako objekty, které jsou
typickymi predstaviteli nové vytvorenych &tyt shlukd, tj. Ctyf typd surovin. Programovym
systémem byl proveden vypodet a rozd&leni objektl do Ctyf shlukid. Prehled vysledki je
uveden v tab. 5. Vstupni promé&nné nejsou vyjadieny ve stejnych jednotkach, proto byla
provedena standardizace.

Tab. 5: Vysledky shlukové nehierarchické analyzy vzorki &. 1 - 73
Results of Clustering by Seeded Method

Cluster Oznaceni v grafech Frequency | Percentage | Seed
4a$s

1 (ostatni vzorky) A 54 73.9726 3

2 (vzorek ¢&.17, 18, B 14 19.1781 66
48, 49, 62-66, 68-70,
72; 73)

3 (vzorek ¢. 50, 51, C 4 5.4795 67
67, 71)

4 (vzorek €.19) E 1 1.3699 19

Jak vyplyvé z tabulky 3, do skupiny ¢&. 2 byly zafazeny objekty ¢. 17-19, 48, 49,
62-66, 68-70, 72 a 73. Tyto objekty predstavuji asi 19 % z celkového poctu. objektl.
Do skupiny &. 3 byly zafazeny objekty & 50, 51, 67 a 72 a pfedstavuji asi 5.5 %.
Do skupiny & 4 byl zafazen pouze objekt &. 19. Zbyvajici objekty, které pfedstavuji
74 %, byly zatazeny do skupiny &.1. Rozd&leni objektd do shlukl téméf koresponduje
s rozd&lenim popsaném v pfedchozi kapitole 4.1. Vyjimku tvofi pouze objekty &. 16
a 50. Shlukovou analyzou byl objekt &. 16 zatazen do shluku 1 a objekt ¢. 50 do shluku
3 a analyzou hlavnich komponent bylo zatazeni provedeno opalné, tj. objekt ¢. 16 byl
zatazen do shluku 3 a objekt & 50 do shluku 1. Grafické znazornéni vysledkl shlukové
analyzy je provedeno na obr. 4 a 5. Na obr. 4 jsou hodnoty jednotlivych objektil
znazornény ve dvojrozmémém prostoru a na obr. 5 v trojrozmérném prostoru.
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Obr. 4 Graf ¢éty¥ shlukii v dvojrozmérném prostoru (SiO., Al,Os)
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Plot of Clus ters

Fe203 | g

Sio2

Obr. 5 Graf ¢tyr shlukd v trojrozmérném prostoru (SiO;, A,O3, Fe,0;3)

4.3  Grafické metody
4.3.1 Sun Ray Plot - graf sluneénich paprski

Grafickou metodou slune¢nich paprskii Sun Ray Plot bylo provedeno vizualni
srovnani objektl z hlediska jejich porovnani s praimérnym objektem. Pro kazdy objekt je
nakreslen polygon z péti paprskd, které predstavuji 5 hlavnich komponent, tj. SiOs,
AL,O;, Fe;0s, ztratu Zihanim a optimalni vlhkost. Na obr. 6 je 73 polygonl testovanych
vzorkl a kli¢ je znazornén na obr. 7. Dle vizualniho srovnani jednotlivych polygont lze
zaznamenat vyrazn&j§i odlidnost tvaru polygont u objekta &. 17 -19, 33, 48 - 51 au
objektl &. 62-73 od ostatnich polygond.
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Obr. 6 Sun Ray Plot - graf sluneénich paprskii pro proménné: SiOs, ALQO;, Fe 03,
ztratu zZihanim a optimalni vlhkost
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Obr. 7 KIi¢ ke grafu sluneénich paprski
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4.3.2 Star Symbol Plot - hvézdicovy symbolicky graf

Graf, podobn& jako ptedchozi, slouZi k vizulnimu zobrazeni podobnosti

vicerozmé&rnych objekt. Pro kazdy objekt je nakreslen polygon z péti paprsku, které
ptedstavuji 5 hlavnich komponent, tj. SiO,, Al,Os, Fe;Os, ztratu Zihanim a optimalni
vlhkost. Na obr. 8 je 73 polygoni testovanych vzorkil a kli¢ je znazornén na obr. 9.
Dle vizualniho srovnani jednotlivych polygont lze zaznamenat vyrazngjsi odliSnost tvaru
polygont: i jejich velikosti od ostatnich polygonil u testovanych objektd & 16 - 19,
u objektd &. 48 - 51 a u objekth ¢. 62-73.

N
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Obr. 8 Star Symbol Plot - hvézdicovy symbolicky graf pro proménné: SiO,, AL,Os,

Fe,0s, ztratu zihanim a optimalni vihkost
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Obr. 9 Kli¢ k hvézdicovému symbolickému grafu

5.0 ZAVER

Cilem predlozené prace bylo zhodnoceni vzorkll nadloZnich sedimentl
v severoteské panvi metodou vicerozmérnych dat na zakladé vysledki laboratornich
skousek a rozdéleni nadlonich sedimentd do surovinovych typ. Vzhledem
k prizkumnym pracim v minulych letech Ize na vybrané lokalité pfedpokladat pfitomnost
minimalné 2 typd surovin.

Na zaklad® statistického zpracovani bylo moZné zafadit jednotlivé vzorky
nadloznich jilovct do &tyf surovinovych typl. ZjiSténé surovinove typy Ize zhodnotit
formou geologicko-technologického. fezu, kde je. provedeno grafické zndzornéni
zjiiténych typl surovin. Geologicko-technologicky fez je veden &tyfmi vrty — V1, V2,
V3 a V4 (viz obr. 10). Ve vrtu V1 tvofi prvnich 7,5 m navazka, kterou lze povazovat za.
nevhodnou surovinu. V geologicko-technologickém fezu jsou nevhodné suroviny
oznadeny jako propléastek (Prp). V hloubce 7,5 m - 73,4 m byla zjisténa surovina typu 1.
Od 73.4 m do 103,7 m se nachazi vrstva uhelnych jilovcl, ktera je nevhodnd pro
keramickeé zpracovani. Od 103,7 m do 109,4 m se nachazi surovina typu 2 a v _hioubce
109,4-119,0 m byla zji§téna surovina typu 4, reprezentovand objektem ¢. 19. V hloubce
119,0 m kongi vrt. Vrtem V2 byla od hloubky 0,0 do 50,7 m zastizena surovina typu 1.
V této hloubce byly ukondeny i vrtné prace. Vrstva suroviny typu 2 ve vrtu V2,
zakreslend v geologicko-technologickém fezu na obr. 10, je pouze idealizované
dokonéeni na zaklad§ vyhodnocené suroviny v sousednich vrtech V1 a V3. Vrt V3 byl
realizovan do hloubky 79,8 m. Od 0,3 do 54,2 m byla ve vrtu vyhodnocena surovina
typu 1. V hloubce 54,2 - 67,7 m se nachazi nevhodna surovina jilovct s uhelnou pfimési.
Surovina typu 2 byla zji§téna v hloubce 67,7 - 73,6 m. V hloubce 73,6 - 79,8 m lezi
vrstva suroviny typu 3. Vrt V4 byl realizovan do hloubky 92,5 m. Ve svrchni ¢asti vrtu,
v hloubce 2,0 - 41,0 m byla opét zjiténa surovina typu 1. Vrstva suroviny typu 2 se
nachazi v hloubce 41,0 - 67,2 m, 69,2 - 84,0 m a 86,3 - 92,5 m. Vzorky jiloved
odebrané v hloubce 67,2 - 69,2 m a 84,0 - 86,3 m byly vyhodnoceny jako surovina
typu 3.
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Jak jiz bylo uvedeno, piedpokladala se pfitomnost dvou typl surovin.
Statistickym testovanim byly urleny &tyfi surovinové typy. Z  geologicko-
technologického fezu na obr. 10 vyplyva, Ze svrchni East fezu tvofi keramicky material
suroviny typu 1. Jednd se o keramzitovou surovinu, ze které je vyrab&n keramzit
rychlovypalem. Surovinu typu 1 lze rovnéZ pouZit jako piisadovou surovinu pro vyrobu
cihlafskych vyrobkid. Tuto surovinu je nutné ostfit, tzn. je nutny pfidavek ostiici smési,
pisku. Ve spodni &asti fezu byly jilovce vyhodnoceny jako surovinové typy 2, 3 a 4. Je
nutné zdlraznit, Ze surovinovy typ 3 je reprezentovan Ctyimi vzorky a typ 4 pouze
jednim vzorkem. Tyto tfi typy surovin lze oznacit jako podskupiny kameninové suroviny.

Vyhodnocené suroviny jsou prvni etapou pii prizkumu doprovodnych surovin
v severoGeské panvi. Na zakladé tohoto prizkumu je provadéna realizace dopliiujicich
vrtl, odbéry dalsich vzorku a jejich laboratorni testovani se zaméfenim na zjiSténé typy
surovin. Geologicko-technologicky fez byva vyuZivan pfipadné i pro hodnoceni barisko-
technologickych podminek.
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