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Využití statistických metod v praxi

Ausnutzung der statistischen Methoden in 
Praxis
Die Datei von funf vorgelegten Beiträgen 
schildert die Anwendungsmóglichkeiten von 
ausgewählten statistischen Methoden in 
Praxis. Auf den angefuhrten Beispielen sind 
die statistische Bewertung eines Komplexes 
von eindimensionalen Dateien, Bildung von 
linearen und unlinearen Modellen, 
Ausnutzung Streuungsanalysetechnik und 
mehrdimensionale statistische Analyse 
dargestellt.
Durch die Methode von eindimensionalen 
Dateien ist das statistische Testen des 
Ergebniskomplexes der Festigkeits- 
bestimmung im reinen Gesteinedruck 
durchgefuhrt, durch die Bildung von linearen 
Regressionsmodell fur eine einheitliche 
Klassifikation der Sedimente (JKS) wurde 
die Beziehung zwischen den Ergebnissen von 
Laborproben erklärt, die die Gesteine- 
beschaffenheiten darstellen, und dem Index 
JKS. Die Demonstration der Bildung von 
unlinearen regressiven Modellen wurde 
einmal auf dem Modeli fur Berechnung des 
Filtrationskoeffizienten durchgefuhrt, der 
aus physikalischen Erwägungen 
ausgegangen ist, und einmal wurden die 
Abhängigkeit zwischen dem Beryliumgehalt 
in Kohle und der Asche in Kohle durch die 
Bildung eines empirischen Modells erfasst. 
Durch die Streuungsanalyse wurde der 
EinfluB der Temperatur auf längliche 
Ánderung durch Brennen von Ziegelrohstoff 
untersucht und weiter wurde das Testen des 
Einflusses im Labor und der Methode fur die 
Bestimmung des Schwefelgehaltes in Kohle 
durchgefuhrt. Ais ein praktisches Beispiel 
der Ausnutzung der mehrräumigen 
statistischen Analyse ist dem Leser die 
Bewertung von keramischen Rohstoffen 
vorgelegt.

Utilization of statistical methods in practice 
The set of five submitted articles shows the 
possibilities of technically directed research 
workers to apply the selected statistical 
methods in practice. At solved examples it is 
executed the statistical evaluation of the set 
of one-dimensional data, formation of linear

and non-linear models, further the utilization 
of technique of scattering analysis and more- 
dimensional statistical analyses.
By the method of one-dimensional data it is 
executed the statistical testing of the result 
set, the statement of unconfined compression 
strength of rocks, formation of linear 
regression model for uniform sediment 
classification (JKS) it was expressed the 
relation between the results of laboratory 
tests which represent the rock properties, 
and by JKS index. The demonstration of the 
formation of non-linear regression models 
was executed partly on the model for 
calculation of filtration coefficient which 
came out of the physical considerations, and 
partly it was determined the dependence 
between the beryllium contents in coal and 
ash in coal by the formation of empirical 
model. By the scattering analysis it was 
tested the temperature influence to the length 
change by the burning of brick raw 
materials and further it was executed the 
testing of laboratory influence and method 
for determination of sulphur contents in 
coal. It is submitted the evaluation of 
ceramic raw materials to reader as a 
practical example of utilization of more- 
dimensional statistical analysis.

HcnojibaoBaHHe CTaTHCTHHecKHx mcto- 

^ob Ha npaKTHKe
CoSpanne runu npe^TasJMeMBix oraTen 

noKa3biBaer bo3mo)khocth TexHHHecKM 
OpHHTHpOBaHHbIX HayHHO-HCCJICAOBa- 
TCJIbCKMX paÓOTHHKOB HO npUKTH- 
UCCKOMy npHMCHeHHK) BbiÓpaHHbIX 
craTHCTHHecKHX mcto^ob. Ha npHMepax 
peinenna npoBo/tHTca cTaTHcrnuccKan 
OUCHKa COBOKynHOCTH OAHOpa3MepHbIX 
AaHHbIX, CO3^aHHe JIHHeHHbIX H 
HejiHHeHHbix mo^cjich, ^anbine 
Hcnojib3OBaHHe tcxhhkh anajinsa 
pacceííHHji h MHoropa3MepHoro 
CTaTHCTHHecKoro anajmaa.
flpH nOMOUIH MCTOSa O«HOpa3MepHbIX 

.ziaHHbix ocymecTBJíeHO craTHCTHHecKoe 
ncnbrraHHe COBOKynHOCTH pe3ym>TaTOB 
ycraHOBJíenna npOHHocTH nopo/x npn 
npOCTOM CSKaTHH, CO3aaHHCM JIHHeHHOH 
perpeccHBHOH mo^cjih nna E^hhoh
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KJiaccHíjDUKaunH cc^hmchtob /EKC/ 
obuto Bbipayceno cooTHomeHHe Mexyiy 
pesynbTaTaMH jiaóoparopHbix Hcnbi- 
TanHH, penpeaeHTHpyioniHX CBOHCTBa 
nopo^, H HřmeKCOM EKC. 
^CMOHCTpHpOBaHHe 06pa30BaHMH 

HCJIHHeHHblX perpeCCHBHbIX MO^eJICH 
npOBOflHJIOCb C O^HOH CTOpOHbl na 
Mo^ejiH pacnera KoacjxjjHUHeHTa 

4)HJIbTpan,HH, KOTOpOblH HCXO^HJ! H3 
(|)H3HHeCKHX COOÓpajKeHHH, c ^pyroň 

CTOpOHbl ycraHaBJíHBajiacb 3aBHCHMOCTb 
Me^cay co,rep}KaHHeM óepHJUnm b yrjie h 

3OJIOH 3a CHCT C03,TaHH3 3MHHpHHeCKOH 
mo^cjih. IIoMombio aHajiH3a pacce^HHa 
HcnbrrbiBaJiocb BjniaHHe TCMnepaTypbi 
na H3MeneHHe AHHHbí npn OKHraHHio 
KHpHHHHOrO CblpbH, a TaK/KC 
npOBO^HJIOCb HCHblTaHHe BJTHaHH^ 
jiaóopaTopHH h Měrová na 
ycraHOBJíeHHe co^epxcaHHa cepbi b yme. 
B KanecTBe npaKTHHecKoro oópasua 
npHMeneHHH MHoropa3MepHoro 
cTaTHCTHHecKoro anajursa HHTaTejno 
npe^Jiaraercs oucHKa KepaMHHecKoro 

cbipba.

Využití statistických metod v praxi
Soubor pěti předložených článků ukazuje 
možnosti technicky zaměřených

výzkumných pracovníků aplikovat vybrané 
statistické metody v praxi. Na řešených 
příkladech je provedeno statistické 
hodnocení souboru jednorozměrných dat, 
tvorba lineárních a nelineárních modelů, 
dále využití techniky7 analýzy rozptylu 
a vícerozměrné statistické analýzy.
Metodou jednorozměrných dat je provedeno 
statistické testování souboru výsledků 
stanovení pevnosti v prostém tlaku hornin, 
tvorbou lineárního regresního modelu pro 
jednotnou klasifikaci sedimentů (JKS) byl 
vyjádřen vztah mezi výsledky laboratorních 
zkoušek, které reprezentují vlastnosti hornin, 
a indexem JKS. Demonstrace tvorby 
nelineárních regresních modelů byla 
provedena jednak na modelu pro výpočet 
koeficientu filtrace, který vycházel 
z fyzikálních úvah, a jednak byla zjišťována 
závislost mezi obsahem beryllia v uhlí 
a popelem v uhlí tvorbou empirického 
modelu. Analýzou rozptylu byl testován vliv 
teploty na délkovou změnu pálením 
cihlářské suroviny a dále bylo provedeno 
testování vlivu laboratoře a metody na 
stanovení obsahu síry v uhlí. Jako praktická 
ukázka využití vícerozměrné statistické 
analýzy je čtenáři předloženo hodnocení 
keramických surovin.
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ÚVOD

Aplikace statistických metod do klasických i nových technických oborů patří 
spíše mezi mladé směry vědních disciplin. Vede ke vzniku oborů jako chemometrie, 
biometrie, psychometrie, ekonometrie apod. Statistická analýza nabývá stále většího 
významu a stává se jedním ze základních přístupů v řadě přírodovědných, technických 
a sociálních věd.
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Předložený soubor pěti článků se zabývá využitím statistických metod pomocí 
počítačového software při zhodnocení výsledků laboratorních zkoušek hornin a uhlí 
severočeské a sokolovské pánve.

Články jsou rozděleny na dvě části. V první části jsou jen velmi stručně popsány 
základní statistické postupy, protože ' cílem nebylo ukázat čtenářům náročnost 
statistického testování, ale možnosti jeho použití v praxi. V druhé části článků je pak 
provedeno řešení vybraných příkladů.

Problematika jednorozměrných dat je diskutována v prvním článku. Cílem 
analýzy jednorozměrných dat je určit povahu dat z hlediska symetrie, homogenity 
a stability, odhadnout jak je analyzovat, zda lze datům věřit a podobně. Na základě této 
diagnostiky je teprve možné rozhodnout o metodě výpočtu odhadu střední hodnoty, 
intervalu spolehlivosti, směrodatné odchylky. V řešeném příkladu prvního článku 
testování souboru výsledků stanovení pevnosti v prostém tlaku hornin je diskutováno, 
jakých chyb se lze dopustit, není-li dodržen uvedený postup statistické analýzy.

V druhém článku je demonstrován postup tvorby lineárního regresního 
modelu. Vytvořením lineárního regresního modelu je objasňován vztah mezi výstupní, 
závisle proměnnou veličinou a vstupními nezávisle proměnnými, veličinami v řadě 
technických oborů. Řešený příklad z praxe se zabývá hledáním vztahu mezi výsledky 
laboratorních zkoušek hornin a indexem jednotné klasifikace zemin JKS.

Třetí článek se zabývá tvorbou nelineárních regresních modelů, pomocí nichž 
lze prakticky řešit řadu technických a přírodovědných úloh, např. konstrukci kalibračních 
modelů, vyjádření základních fyzikálně-chemických zákonitostí, tvorbu empirických 
modelů apod. V řešených příkladech je předložen čtenáři jednak nelineární regresní 
model, vycházející z fyzikálních úvah, a jednak model empirický, který objasňuje vztah 
mezi obsahem popela v uhlí a obsahem beryllia v popelu uhlí.

Čtvrtý článek popisuje možnosti využití analýzy rozptylu v praxí Analýza 
rozptylu, tzv. ANOVA, je technika, která umožňuje posouzení významnosti jednotlivých 
zdrojů variability v datech. Pomocí ANOVY lze např. určit vliv typu přístroje, lidského 
faktoru a obsluhy na výsledek měření. Tato technika je dále vhodná při zpracování 
mezilaboratorních experimentů a určení významnosti rozdílů mezi laboratořemi na 
výsledek analýz apod. Jako ukázka využití techniky ANOVY je čtenáři předloženo 
posouzení vlivu teploty na délkovou změnu pálením cihlářské suroviny a testování vlivu 
laboratoře a metody na stanovení obsahu síry v uhlí.

V pátém článku jsou diskutovány některé postupy vícerozměrné statistické 
analýzy. V praxi se vícerozměrné statistické metody používají pro řešení problémů 
v situaci, kdy u souboru objektů je sledována více než jedna proměnná. S touto situací se 
lze dnes setkat prakticky ve všech vědních oborech, přírodními a technickými vědami 
počínaje a společenskými vědami konče. Jako praktická ukázka využití vícerozměrné 
statistické analýzy je uvedeno hodnocení keramických surovin.
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I. STATISTICKÉ ZPRACOVÁNÍ JEDNOROZMĚRNÝCH DAT

L DŮLEŽITÉ POJMY
Data* Data je soubor naměřených či jinak získaných hodnot, zatížených chybou. 

Ze statistického hlediska jsou data považována za realizaci náhodné veličiny, popř. 
náhodný výběr. Data se dále rozlišují na jednorozměrná a vícerozměrná (jednorozměrný 
a vícerozměrný výběr). Jednorozměrná data jsou např. opakované měření jedné veličiny 
(pevnosti v tlaku, vlhkosti, zisku apod.) v různém čase nebo na různých místech. 
U vícerozměrných výběrů se provádí opakovaná měření několika veličin současně.

Náhodná veličina, náhodné rozdělení, náhodný výběr. Veličina, která může 
nabývat jakoukoliv hodnotu z určité množiny hodnot a s níž je spojeno nějaké rozdělení 
pravděpodobnosti, se nazývá náhodná veličina. Náhodná veličina, která může nabývat 
pouze izolované hodnoty, se nazývá diskrétní. Náhodná veličina, která může nabývat 
jakékoliv hodnoty z konečného nebo nekonečného intervalu, se nazývá spojitá. Existuje 
nekonečné množství všech možných hodnot, které lze naměřit. Tyto všechny hodnoty je 
možné chápat jako náhodné rozdělení nebo statistický model náhodné veličiny. Každé 
náhodné rozdělení je definováno např. hustotou pravděpodobnosti, distribuční funkcí 
nebo kvantilovou funkcí. Tyto tři funkce jsou co do informace o rozdělení ekvivalentní, 
jedna se dá spočítat z druhé. Obecně může mít takové rozdělení složitý tvar, k jehož 
popisu je třeba velké množství parametrů. V praxi je k dispozici jen omezený počet 
možných hodnot, které nám vybrala náhoda, tedy jde o náhodný výběr. Protože není 
známo jak spravedlivě jsou tyto hodnoty „vybrány“, provádí se rekonstrukce původního 
rozdělení, obvykle pomocí odhadů parametrů rozdělení jako jsou průměr a směrodatná 
odchylka normálního rozdělení apod.

Distribuční funkce (kumulativní hustota) F(x) je pravděpodobnost, že náhodná 
veličina z daného rozdělení bude menší než x. F je zdola omezeno nulou, shora 
jedničkou. Na ose x je pravděpodobnost, na ose y je kvantil daného rozdělení.

Kvantil \e hodnota, odpovídající zvolené pravděpodobnosti na distribuční funkci. 
Kvantil je v podstatě každá možná hodnota měřené veličiny, k níž lze přiřadit jisté 
nrneento 100 ^ íresn. nravděnndQbnnQt a). Mluví se pak o a. - kvantilu neboli 
o a-procentním kvantilu.

Hustota pravděpodobnosti f(x) je derivace distribuční funkce. Na první pohled 
dává lepší představu o rozdělení dat než distribuční funkce. Je zní obvykle patrná 
nesymetrie (sešikmení) rozdělení nebo přítomnost více maxim (nehomogenita). Její 
hodnota na ose y však nemá význam pravděpodobnosti. V intervalu kolem maxima se 
bude vyskytovat více naměřených hodnot, než ve stejném intervalu jinde.

Statistika je jednak označení matematické disciplíny, jednak hodnota získaná 
jednoznačně z náhodných experimentálních dat neboli funkce náhodného výběru. 
Statistikou je aritmetický průměr, směrodatná odchylka, medián, nejmenší a největší 
naměřená hodnota, směrnice regresní přímky, ale také korelační matice.

Normální rozdělení (neboli Gaussovo) je nejčastěji definováno svou hustotou 
pravděpodobnosti. Má dva parametry - střední hodnotu a rozptyl. Odmocnina z rozptylu 
se nazývá směrodatná odchylka. Normální rozdělení je symetrické, data s normálním 
rozdělením mohou nabývat hodnot od -oo do +oo. Již z této věty vyplývá, že používat
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modelu normálního rozdělení pro reálná data je většinou teoreticky a často i prakticky 
nesprávné. Reálná data nemohou nabývat libovolné hodnoty. Hmotnost, délka aj. 
veličiny nemohou být záporné, koncentrace je omezena na interval 0-100%, podobná 
omezení má většina přírodních, technologických i ekonomických veličin. Přesto se 
předpoklad o normalitě dat používá. Za prvé proto, že matematické vlastnosti Gaussova 
rozdělení dovolují snadné odvození jeho důležitých vlastností a výpočetních metod (např. 
testy, metoda nejmenších čtverců, vlastnosti odhadů). Pro jiná rozdělení jsou takové 
výpočty složitější a někdy i nemožné. Za druhé se někdy data skutečně chovají tak, že 
jejich rozdíl od normality je zanedbatelný.

Statistický test má dát jednoznačnou odpověď na otázku na základě naměřených 
dat. Má obvykle formu hypotézy Ho, kterou test zamítne nebo příjme. Zamítnutí 
hypotézy Ho znamená přijetí takzvané alternativní hypotézy HA , která je negací Ho. 
Vzhledem k náhodné povaze dat nemůže být výsledek testu stoprocentní. Každý test se 
může zmýlit. Proto je u většiny testů nutné se rozhodnout jaké riziko omylu chceme 
připustit. Tímto rizikem je hladina významnosti, obvykle označovaná jako a. Volba 
hladiny významnosti je v kompetenci uživatele. Obvykle se užívá hodnota a = 0.05, tedy 
5%. Použití jiné hodnoty by se mělo zdůvodnit a pak se musí dodržovat vždy.

2. STATISTICKÉ ZPRACOVÁNÍ JEDNOROZMĚRNÝCH DAT

2.1 Průzkumová analýza dat
Statistickému zpracování jednorozměrných výběrů předchází průzkumová 

(exploratorní) analýza. Jejím účelem je odhalit zvláštnosti dat a ověřit předpoklady pro 
následné statistické zpracování. Při zpracování jednorozměrných výběrů, které pocházejí 
ze souborů o ne zcela známém rozdělení, je sledován pouze jeden znak, např. 
mechanicko-fyzikální vlastnost, chemický nebo mineralogický komponent hornin, uhlí 
nebo parametr charakterizující určité vlastnosti materiálů apod. Cílem statistického 
zpracování je z chování výběru usuzovat na chování celého souboru. Z různých typů 
výběru se v praxi uplatňují např. v laboratoři naměřené hodnoty, které jsou chápány jako 
realizace jisté náhodné veličiny. Reprezentativní náhodný výběr je charakterizován 
následujícími předpoklady, které tvoří základ statistických metod vyhodnocení výsledků 
měření:

a) Jednotlivé prvky výběru jsou vzájemně nezávislé.
b) Výběr je homogenní, tj. všechny prvky výběru pocházejí ze stejného rozdělení 

pravděpodobnosti s konstantním rozptylem.
c) Předpokládá se, že jde o normální rozdělení.
d) Všechny prvky souboru mají stejnou pravděpodobnost, že budou zařazeny do 

výběru.

2.1.1 Grafická průzkumová analýza
Ke komplexnímu posouzení zvláštností statistického chování dat se využívají 

grafické metody: kvantilový graf, rozptylový graf, graf polosum, symetrie, šikmosti 
a špičatosti, Q-Q graf, podmíněný Q-Q graf, graf hustoty pravděpodobnosti, krabicový 
graf s kvantity a kruhový graf.

Kvantilový graf umožňuje přehledně znázornit data a snadněji rozlišit tvar 
rozdělení, který může být symetrický, sešikmený k vyšším nebo nižším hodnotám. Dále
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lze identifikovat lokální koncentrace dat, vybočující data. Diagram rozptýlení 
představuje jednorozměrnou projekci kvantilového grafii do osy x. Tento graf ukazuje na 
lokální koncentrace dat a indikuje i podezřelá a vybočující měření. Rozmítnutý diagram 
rozptýlení představuje rovněž projekci kvantilového grafu. Pro částečnou sumarizaci dat 
lze využít krabicového grafu, který umožňuje znázornění robustního odhadu polohy 
mediánu, posouzení symetrie v okolí kvantilů, posouzení symetrie u konců rozdělení 
a identifikaci odlehlých dat. Obdobou krabicového grafu je vrubový krabicový graf, 
který umožňuje i posouzení variability mediánu. Pro svoji jednoduchost a přehlednost se 
užívají krabicové grafy především k porovnání několika výběrů. Indikují dobře symetrii 
rozdělení a podezřelá měření. Snadné ověření symetrie umožňuje graf polosum a graf 
symetrie. Q-Q graf pro normální rozdělení je jedním z nejpoužívanějších exploratorních 
grafu pro hodnocení normality.

Při statistickém zpracování se předpokládá, že jde o nezávislé, stejně rozdělené 
náhodné veličiny pocházející z normálního rozdělení. Rozsah výběru postačuje k určení 
dostatečně přesného odhadu parametrů polohy a rozptýlení. Pokud předpoklady o datech 
nejsou splněny, jejich analýza je značně složitá. Ověření všech předpokladů je možné při 
využití metod průzkumové analýzy a interaktivního přístupu na osobních počítačích.

2.1.2 Ověření základních předpokladů
Základním předpokladem kvalitních měření je vzájemná nezávislost jednotlivých 

výsledků. Závislost měření je obvykle způsobena:
a) nestabilitou měřícího zařízení nebo změnou stavu měřícího zařízení
b) nekonstantností podmínek měření
c) zanedbáním faktorů, které významně ovlivňují výsledek měření, jako je objem 

vzorků, teplota, nečistota chemikálií
d) nesprávným, nenáhodným výběrem vzorků k měření

Pokud se uvedené faktory mění s časem, projeví se vznikem časové závislosti 
mezi prvky výběru, uspořádanými v časovém sledu. V případě skokových změn těchto 
faktorů vzniká heterogenní výběr. V obou případech se objeví zvýšený rozptyl oproti 
rozptylu homogenního výběru. Odhalení závislosti v datech vyžaduje obecně prověření 
celého procesu měření a sběru dat.

K základním předpokladům patří normalita výběrového rozdělení, neboť je na ní 
založena celá klasická analýza dat, testování vybočujících měření a testy nezávislosti 
prvků výběru. Existují dva základní typy testů normality, směrové testy a omnibus-testy. 
Testy jsou obecně méně citlivé na odchylky od normality než výše uvedené diagnostické 
grafy a navíc odchylka od normality může být mnohdy způsobena vybočujícími 
hodnotami.

Tam, kde se vyskytuje výrazná nestejnoměrnost měřených vlastností vzorků, kde 
se náhle mění podmínky experimentů a data obsahují vybočující měření, dochází 
k nehomogenité naměřených dat. Pokud se v datech vyskytují odlehlé, vybočující 
hodnoty, lze je běžně identifikovat v grafech průzkumové analýzy. Vybočující měření 
silně zkreslují odhady parametrů, takže mohou zcela znehodnotit další statistickou 
analýzu. Na základě logické analýzy je třeba nejdříve zvážit, zda nejde o sešikmené 
rozdělení. Body, které se jeví vybočující pro symetrické rozdělení, mohou být pro 
sešikmená rozdělení naopak přijatelné. Pokud se jedná o vybočující pozorování, lze 
použít dvou možností. První možnost spočívá ve vyloučení vybočujících hodnot z další
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analýzy, což nemusí být vždy vhodné řešení. Vybočující měření mohou být totiž 
výsledkem řídce se vyskytujících jevů a jejich vyloučením pak může dojít k úplné ztrátě 
informace. Druhá možnost spočívá v použití robustních metod. Tento postup nemusí být 
ale vždy korektní. Robustnost spočívá v přiblížení se k přijatému modelu bez ohledu na 
jeho platnost. Která měření vykazují evidentní hrubé chyby jako je selhání přístroje, 
špatný zápis dat apod. a která data jsou jen podezřelá, by měl rozhodnout 
experimentátor. Evidentní hrubé chyby je vhodné z další analýzy vyloučit, ale podezřelá 
měření je lépe ponechat. Robustními metodami se jejich vliv na odhady parametrů 
výrazně oslabí.

2.2 Statistické zpracování dat
Po předběžné analýze naměřených dat následuje další etapa statistické analýzy. 

Pro výběry malého rozsahu se vyčíslují charakteristiky přímo, u výběrů většího rozsahu 
se data nejdříve člení do tříd a pak se pracuje se skupinami. V praxi, např. v chemické 
disciplině, není soubor všech možných naměřených hodnot většinou známý. Statistická 
analýza se provádí na základě jeho reprezentativního vzorku, tzv. náhodného výběru. 
Pro reprezentativní náhodný výběr platí, že všechny prvky výběru se chápou jako 
náhodné veličiny, které se řídí stejným zákonem rozdělení, tj. výběr je homogenní 
a hodnoty zahrnuté do výběru jsou vybrány nezávisle na sobě.

Výběr je charakterizován informací o střední hodnotě a rozptýlení kolem střední 
hodnoty. Určit střední hodnotu sledované veličiny je prvním a zdánlivě jednoduchým 
úkolem, který lze s naměřenými daty udělat. Aritmetický průměr je nej používanějším, 
a většině lidí také jediným známým odhadem střední hodnoty náhodné veličiny. Je to 
součet hodnot dělený jejich počtem. Málokdo si uvědomuje nedostatky takového 
odhadu, které mohou vést až kjeho nepoužitelnosti. Aritmetický průměr je totiž 
„správným“ odhadem jen tehdy mají-li data normální rozdělení (Gaussovo). Lze tušit, že 
tento předpoklad je často falešný.

Doplňkem střední hodnoty a rozptýlení kolem střední hodnoty je pak informace 
o tvaru výběrového rozdělení. Statistické charakteristiky polohy, rozptýlení a tvaru 
výběru se nazývají výběrové charakteristiky. Z těchto charakteristik se pak usuzuje na 
statistické charakteristiky základního souboru.

Použití jednotlivých typů charakteristik je závislé na rozdělení základního 
souboru, ze kterého výběr pochází. Pokud platí předpoklady normality, nezávislosti 
a homogenity, vyčíslují se základní momentové charakteristiky. Jsou-li v datech 
předpokládány i vybočující hodnoty, užívají se robustní odhady, zejména kvantilové. 
Pokud bylo nalezeno jiné než předpokládané normální rozdělení, používají se 
maximálně věrohodné odhady.

Základní charakteristikou polohy je výběrový průměr x, který je zároveň 
maximálně věrohodným odhadem střední hodnoty pro normální rozdělení. Základní 
charakteristikou variability je výběrový rozptyl s2, který je zároveň nevychýleným 
odhadem rozptylu pro normální rozdělení. Obě tyto charakteristiky se označují jako 
momentové a používají pro základní statistický popis výběrů pocházející z libovolného 
rozdělení.

Kvantilové a robustní charakteristiky jsou méně citlivé na vybočující hodnoty 
než momentové. Patří sem především medián, 'xo.s- Jde vždy o 50%ní kvantil, kdy
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polovina prvků leží pod a polovina prvků nad hodnotou mediánu. Medián je maximálně 
věrohodným odhadem polohy u Laplaceova (oboustranného exponenciálního rozdělení). 
Pro normální rozdělení však již není medián nejvhodnější. Pro případ rovnoměrného 
rozdělení je vydatným odhadem polohy polosuma xp, kdy součet minimálního 
a maximálního prvku ve výběru je vydělen dvěmi. Dále sem patří modus, xm, je 
definován jako lokální maximum na hustotě pravděpodobnosti. Jedním 
z nejefektivnějších a přitom jednoduchých robustních odhadů polohy je uřezaný průměr 
x (3), který využívá lineární kombinace pořádkových statistik.

Ze statistického hlediska mají bodové odhady malý význam, protože neříkají nic 
o tom kde leží skutečné hodnoty parametrů. Více informací poskytuje intervalový odhad, 
který určuje interval, v němž se bude se zadanou pravděpodobností nacházet skutečná 
hodnota daného parametru. Neznámý parametr je tedy odhadován nikoliv jednou, ale 
dvěma číselnými hodnotami, které tvoří meze tzv. intervalu spolehlivosti (konfidenčního 
intervalu). Interval spolehlivosti pokryje neznámý odhadovaný parametr daného 
rozdělení základního souboru s předem zvolenou, dostatečně velkou pravděpodobností 
(1-a), která se nazývá koeficient spolehlivosti (konfidenční koeficient, statistická jistota).

Pro intervaly spolehlivosti platí, že:
a) Čím je rozsah výběru větší, tím je interval spolehlivosti užší.
b) Čím je odhad přesnější a má menší rozptyl, tím je interval spolehlivosti užší.
c) Čím je větší statistická jistota (1-ct), tím je interval spolehlivosti širší.

2.3 Matematická transformace dat
Pokud se na základě analýzy dat zjistí, že rozdělení výběru dat se příliš odlišuje od 

rozdělení normálního, vzniká problém, jak data vůbec vyhodnotit. V řadě případů lze 
nalézt vhodnou transformaci, která vede ke stabilizaci rozptylu, zesymetričtění rozdělení 
a někdy i k normalitě. Vychází z představy, že zpracovaná data jsou nelineární 
transformací normálně rozdělené náhodné veličiny x. Hledá se knim pak inverzní 
transformace g(x). Nejčastěji používaná transformační funkce se nazývá Box-Coxova 
transformace. Cílem Box-Coxovy transformace je nalézt takovou hodnotu, která zajistí 
maximální symetrii nebo lépe maximální normalitu dat.

3. PŘÍKLAD STATISTICKÉHO ZPRACOVÁNÍ SOUBORU JEDNORO­
ZMĚRNÝCH DAT

3.1 Zadání:
U 26ti vzorků hornin, které reprezentují kvazihomogenní materiál a jejichž stav 

odpovídal podmínkám zkoušky, bylo provedeno stanovení pevnosti v prostém tlaku dle 
ČSN 72 1025 „Laboratorní stanovení smykové pevnosti zemin zkouškou v prostém 
tlaku“. U souboru výsledků laboratorních zkoušek je požadováno určení bodových 
a intervalových odhadů pevnosti v prostém tlaku. Výsledky jsou uvedeny v MPa.

3.2 Řešení:
U dat byla nejprve provedena pomocí statistického softwaru Adstat 2.0 spojitá 

exploratorní analýza a ověření základních předpokladů. Vstupní data a vstupní podmínky 
jsou pro všechny výpočty stejné, proto jsou uvedeny pouze u číselného vstupu 
exploratorní analýzy
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L EXPLORATORNÍ ANALÝZA

Číselný výstup ze statistického software
V číselném výsledkovém výstupu statistického software jsou základní statistické 

charakteristiky a parametry regresní přímky pro závislost charakteristiky šikmosti na 
čtverci kvantilu normovaného normálního rozdělení. Dále je zde tabulka kvantilů od 5 
do 95% a hodnoty dalších významných kvantilů. Kvantily se používají při konstrukci 
diagnostických grafu.

Pro normální rozdělení je šikmost gi = 0 a špičatost g2 = 3. Tvarové parametry, 
uvedené v číselném výstupu exploratorní analýzy (3) klasické odhady, pro šikmost 
a špičatost ukazují na exponenciální rozdělení souboru.

VSTUPNÍ DATA A PODMÍNKY:

Počet dat 26

Hladina významnosti alfa 0 050

KLASICKÉ ODHADY PARAMETR

1 1.7500E-01 8 9.4000E-01 15 1.6000E-01 22 2.3000E-01

2 1.1700E-01 9 3.7000E-01 16 2.9500E-01 23 1.8600E-01

3 1.8000E-01 10 3.3000E-01 17 1.4000E-01 24 5.7000E-01

4 2.7100E+00 11 3.1000E-01 18 2.7000E-01 25 1.55OOE-O1

5 1.2700E+00 12 1.8000E-01 19 2.6000E-01 26 5.1200E-01

6 1.1500E+00 13 2.2000E-01 20 2.6000E-01

7 1.2500E+00 14 1.9000E-01 21 1.7800E-01

U

Medián 2.6OO0E-O1 Průměr 4.8492E-01

Rozptyl 3.2871E-01 Směrodatná odchylka 5.7333E-01

Špičatost 9.8557E+00 Šikmost 2.5807E+00
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(4) KVANTILY A PÍSMENOVÉ HODNOTY: 

Kvantilové míry:

Procento Kvantil Procento Kvantil

5 1.4375E-01 10 1.5750E-01

15 1.7125E-01 20 1.7800E-01

25 1.8000E-01 30 1.8300E-01

35 1.8900E-01 40 2.2000E-01

45 2.3750E-01 50 2.6000E-01

55 2.6750E-01 60 2.9500E-01

65 3.1500E-01 70 3.5OOOE-O1

75 4.7650E-01 80 5.7000E-01

85 9.9250E-01 90 1.2000E+00

95 1.2650E+00

Písmenové hodnoty:

Kvantil Písmeno Pravděpodobnost Spodní mez Horní mez

Sedecil D 0.0625 1.4844E-01 1.2587E+00

Oktil E 0.1250 1.6187E-01 1.1237E+00

Kvartil F 0.2500 1.8000E-01 4.7650E-01

Medián M 0.5000 2.6000E-01 2.6000E-01

(5) KVANTILOVÉ MÍRY:

Kvantil F (0.25) E (0.125) D(0.0625)

Rozsah 2.9650E-01 9.6187E-01 1.1103E+00

Polosuma 3.2825E-01 6.4281E-01 7.0359E-01

Délka konců 0.0000E+00 1.1768E+00 1.3203E+00

Sikmost 1.3506E-01 -1.6448E-01 -9.2629E-02

Pseudo Sigma 2.1996E-01 4.1821E-01 3.6285E-01

Diskuse ke grafickému výstupu exploratorní analýzy

Diagnostické grafy exploratorní analýzy jsou znázorněny na obr 1-3.

a) Bodové a krabicové grafy na obr. 1 signalizují jednak přítomnost pěti vybočujících 
hodnot směrem k vyšším hodnotám a dále ukazují na asymetrii rozdělení.

b) Kvantilový graf na obr. 1 ukazuje odchylky od normálního rozdělení a signalizuje 
jeden vybočující bod na straně vyšších hodnot.

c) Graf symetrie na obr. 1 ukazuje na asymetrii dat. Pro ideálně symetrická rozdělení
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by body měly ležet na horizontální přímce s úsekem rovným mediánu. Nelineární 
průběh indikuje nehomogenitu výběru. Byl zjištěn jeden vybočující bod směrem 
k vyšším hodnotám.

d) Graf polosum na obr. 1 rovněž signalizuje asymetrii, protože data mají výrazný 
trend. Graf signalizuje přítomnost dvou vybočujících hodnot.

e) Graf šikmosti na obr. 2 je zobrazen pro indikaci šikmosti. Za předpokladu symetrie 
vyjde ideální horizontální přímka.Graf ukazuje na sešikmení k nižším hodnotám. 
Směrnice určuje odhad parametru šikmosti.

f) Graf na obr. 2 indikuje špičatost. Pro normální rozdělení je ideální horizontální 
přímka.

g) Q-Q graf je znázorněn na na obr. 2. Tímto grafem je ověřována shoda rozdělení 
výběru s normálním rozdělením. V ideálním případě normality leží jednotlivé body na 
přímce. Čarou je vyznačen teoretický průběh. Průběh testovaných dat naznačuje, že 
data nepocházejí z normálního rozdělení. Z toho plyne, že použití aritmetického 
průměru jako odhadu střední hodnoty, by bylo nesprávné. Graf indikuje přítomnost 
jedné vybočující hodnoty směrem k vyšším hodnotám.

h) Podmíněný Q-Q graf na obr. 2 je znázorněn rovněž pro ověření shody rozdělení 
výběru s normálním rozdělením. V ideálním případě normality leží body na přímce. 
Průběh dat indikuje, data nepocházejí z normálního rozdělení. Graf indikuje 
přítomnost jedné vybočující hodnoty směrem k vyšším hodnotám.

i) Graf rozptýlení s kvantily na obr. 3 umožňuje orientační posouzení symetrie, resp. 
přítomnosti odlehlých bodů podle symetrie a umístění obdélníků. Tento graf 
signalizuje asymetrii testovaného výběru.

j) Graf hustoty pravděpodobnosti na obr. 3 nabízí porovnání hustoty 
pravděpodobnosti rozdělení, z něhož pocházejí naše data (čárkovaná čára), 
s hustotou pravděpodobnosti normálního rozdělení (plná čára) jako vhodné vizuální 
posouzení normality dat. Z grafu je zřejmé, že testovaný výběr nepochází 
z normálního rozdělení.

k) Kruhový graf na obr. 3 slouží pro indikaci normality, resp. symetrie testovaného 
rozdělení. V ideálním případě má tvar kružnice se symetrickým svislým výsekem ve 
tvaru V. Testovaný soubor dat pevností v prostém tlaku vykazuje asymetrii rozdělení.

Závěr exploratorní analýzy:
Z průzkumové analýzy dat vyplývá, že data jeví asymetrii, nepocházejí 

z normálního rozdělení a v jednotlivých grafech byla zjištěna přítomnost vybočujících 
hodnot v počtu 1-5.

n. ZÁKLADNÍ PŘEDPOKLADY
Tato metoda obsahuje důležité diagnostiky pro ověřování předpokladů o datech. 

Ve výsledkovém souboru statistického software jsou po informaci o vstupním souboru 
a podmínkách uvedeny ve třech odstavcích základní diagnostiky.

V prvním odstavci jsou uvedeny klasické odhady. Ve druhém odstavci je uveden 
závěr testu normality na základě porovnání vypočteného testovacího kritéria 
a tabulkového kvantilu. V testovaném případě byl předpoklad normality zamítnut. 
Ve třetím odstavci je provedeno ověření nezávislosti na základě srovnání testu 
autokorelace a tabulkového kvantilu. Testovaná data lze považovat za nezávislá. 
V případě, že jsou detekovány odlehlé body, jsou po jejich vyloučení ze souboru 
vypočteny ještě jednou klasické charakteristiky (4. odstavec) jako v prvním odstavci.
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Obr. 1: Diagnostické grafy exploratorní analýzy
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Obr. 2: Diagnostické grafy exploratorní analýzy
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Grař rozptúlení s kvantitu

Obr. 3: Diagnostické grafy exploratorní analýzy
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TEST NORMALITY:

Tabulkový kvantil ChiA2(l-alfa,2) 5.9915E+00

ChiA2-statistika L3154E+02

Závěr Předpoklad normality zamítnut

Vypočtená hladina významnosti 0.0000E+00

(2) TEST NEZÁVISLOSTI:

Tabulkový kvantil t(l-alfa/2,n+l) 2.0518E+00

Test autokorelace 1.1216E+00

Závěr Předpoklad nezávislosti přijat

Vypočtená hladina významnosti 1.3595E-01

Předpoklad homogenity výběru:

Aritmetický průměr 4.8492E-01

Rozptyl 3.2871E-01

Směrodatná odchylka 5.7333E-01

Vnitřní meze

Spodní mez -5.2103E-01

Horní mez 1.2130E+00

(3) DETEKCE ODLEHLÝCH BODŮ:

Bod číslo 4 (horní) 2.7100E+00

Bod číslo 5 (horní) 1.2700E+00

Bod číslo 7 (horní) 1.2500E+00

Počet odlehlých bodů 3

Parametry s vynechanými odlehlými hodnotami:

Průměr 3.2079E-01 Rozptyl 6.5701E-02

Směrodatná odchylka 2.5632E-01 Šikmost 2.3135E+00

Špičatost 7.8612E+00

Závěr z ověření základních předpokladů:
Závěr je shodný se závěrem exploratorní analýzy. Data nepocházejí z normálního 

rozdělení, předpoklad normality byl tedy zamítnut. Předpoklad nezávislosti byl přijat. 
Dále byly identifikovány tři odlehlé body
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TIL MOCNINNÁ TRANSFORMACE
Základní předpoklady společně s exploratorní analýzou jsou první kroky při 

analýze neznámých dat. Na základě jejich výsledků je pak třeba rozhodnout jakým 
způsobem postupovat při další analýze. Provedením exploratorní analýzy a ověření 
základních předpokladů bylo zjištěno, že data testovaného souboru nepochází 
z normálního rozdělení, dále data jeví asymetrii a rovněž byla zjištěna přítomnost 
odlehlých bodů. Následkem toho nelze použít průměr jako odhad střední hodnoty. 
Z těchto výsledků vyplývá, že bude nutné provést nelineární transformaci dat. Data byla 
zpracována symetrizující mocninnou transformací a normalizující Box-Coxovou 
transformací. Jejich účelem je odstranit asymetrii a přiblížit se k normalitě s využitím 
vybraných průzkumových grafu. Po každé transformaci je vypočten opravený průměr.

Ve výsledkovém souboru použitého statistického software jsou uvedeny základní 
statistické charakteristiky původních dat. Tyto údaje jsou v předloženém článku 
vynechány, protože jsou již dokumentovány ve výše uvedených číselných výstupech 
statistického zpracování. Dále jsou ve výstupu uvedeny optimální hodnoty exponentu pro 
prostou mocninnou i pro Box-Coxovu transformaci, minimalizující různé míry špičatosti 
a asymetrie. Pro tento exponent jsou určeny transformovaný průměr a rozptyl spolu 
s opraveným (retransformovaným) průměrem. V posledním odstavci je jako ukázka 
uvedeno několik hodnot po transformaci.

V grafickém výstupu jsou uvedeny čtyři typy grafu. Na obr.4 je uveden 
kvantilový graf pro původní data a pro data po prosté transformaci a po Box-Coxově 
transformaci. Na obr. 4 je uveden i graf Hines-Hinesové, který je konstruován pro výběr 
optimálního exponentu při prosté transformaci. Tečkované čáry odpovídají mocninám 
zleva. Lomená čára spojuje body odpovídající nalezeným optimálním exponentům pro 
různé části výběru (kvartil, oktil, sedecil). Pokud leží tato čára rovnoběžně s nejbližší 
izočárou, lze považovat transformaci za efektivní. Pokud leží napříč, nepochází 
asymetrie dat z mocninné nebo podobné transformace.

Na obr. 5 je uveden Q-Q graf pro původní data a pro data po prosté a Box 
Coxově transformaci. Grafy jsou konstruovány pro ověření shody výběrového rozdělení 
s normálním. Dále ie na obr. 5 uveden graf maximální věrohodnosti. Tento graf wiadřuie 
závislost logantmu věrohodnostni funkce pro Box-Coxovu transformaci prou hounoiě 
exponentu. Poloha maxima křivky na x-ové ose odpovídá optimální hodnotě exponentu 
z hlediska maximální věrohodnosti pro normální rozdělení.

(1) PROSTÁ MOCNINNÁ TRANSFORMACE:

(A) Optimální hodnoty mocniny pro vybraná kritéria:

Optimální mocnina -9.3333E-01 Pro šikmost 2.6720E-02

Optimální mocnina -1.6000E+00 Pro špičatost 3.0398E+00

Optimální mocnina -9.3333E-01 Pro asymetrii 2.4377E-03

Optimální mocnina -1.2000E+00 Pro asymetrii, rob. 8.8679E-03

Optimální mocnina -1.0667E+00 Pro Hinkley-asymetrii 7.4091E-02

Zvolená mocnina -0.93
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Obr. 4: Grafy pro původní a transformovaná data
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Obr. 5: Grafy pro původní a transformovaná data

34



Zpravodaj Hnědé uhlí 11/98

Průměr 3.5329E+00

Rozptyl 3.5752E+00

Směrodatná odchylka 1.8908E+00

Šikmost -2.6720E-02

Špičatost 2.1414E+00

Opravený průměr 2.5865E-01

Kvantilové

Kvantil P Spodní mez Horní mez Polorozptyl

Medián 0.5 3.5158E+00 -

Kvartil 0.25 1.8234E+00 4.9684E+00 3.1450E+00

(C) Míry rozpty u

Kvantil P Polosuma Šikmost Délka konců Norm. d. konců

Kvartil 0.25 3.3959E+00 3.8132E-02 0.0000E+00 0.0000E+00

(2) BOX-COXOVA TRANSFORMACE:

(A) Optimální hodnoty mocniny pro vybraná kritéria:

Optimální mocnina -9.3333E-01 pro šikmost 2.6720E-02

Optimální mocnina -1.6000E+00 pro špičatost 3.0398E+00

Optimální mocnina -9.3333E-01 pro asymetrii 2.4377E-03

Optimální mocnina -1.2000E+00 pro asymetrii, rob. 8.8679E-03

Optimální mocnina -1.0667E+00 pro Hinkley-asymetrii 6.9461E-02

Optimální mocnina -8.0000E-01 pro věrohodnost 3.8355E+01

Zvolená mocnina -0.93

Průměr -2.7138E+00

Rozptyl 4.1041E+00

Směrodatná odchylka 2.0259E+00

Šikmost 2.6720E-02

Špičatost 2.1414E+00

Opravený průměr 2.5865E-01
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(B) Kvantilové míry:

Kvantil P Spodní mez Horní mez Polorozptyl

Medián 0.5 -2.6955E+00 - -

Kvartil 0.25 -4.2518E+00 -8.8218E-01 3.3697E+00

(C) Míry rozptylu

Kvantil P Polosuma Šikmost Délka konci Norm. d. konců

Kvartil 0.25 -2.5670E+00 -3.8132E-02 O.0000E+O0 0.0000E+00

(4) SETŘÍDĚNÁ PŮVODNÍ A TRANSFORMOVANÁ DATA:

Původní Po prosté transformaci Po Box-Coxově-transformaci

1.1700E-01 3.9436E-01 -6.8656E+00

1.4000E-01 8.0005E-01 -5.6415E+00

1.5500E-01 8.1199E-01 -5.0331E+00

2.7100E+00 7.4079E+00 6.4890E-01

IV. URČENÍ ROBUSTNÍCH ODHADŮ PARAMETRŮ POLOHY 
A ROZPTÝLENÍ

Jak již bylo uvedeno, výběrový průměr x a výběrový rozptyl s2 jsou efektivní 
odhady parametrů polohy rozptýlení jedině pro data, která pocházejí z normálního 
rozdělení. Jestliže však výběr pochází z jiného rozděleni než normálního nebo jsou-li 
v datech vybočující hodnoty, jak je tomu i v našem testovaném příkladě, efektivnost 
odhadů x a s2 rychle klesá. Při narušení předpokladu normality způsobeném obyčejně 
vybočujícími měřeními lze získat efektivní odhady s využitím robustních metod.

(1) KLASICKÉ ODHADY PARAMETRŮ (za předpokladu normality):

Průměr 4.8492E-01

Směr, odchylka 5.7333E-01

Rozptyl 3.2871E-01

95.0% spolehlivost

Spodní mez 2.5335E-01

Horní mez 7.1650E-01
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(2) ROBUSTNÍ ODHADY PARAMETRŮ (pro neplatnost normality):

Medián 2.6000E-01

Směr, odchylka 1.5516E-01

Rozptyl 2.4074E-02

Směr, odchylka 2.0123E-03

Rozptyl (nepař.) 4.4859E-02

Směr, odchylka 2.0547E-03

Rozptyl (Marritz) 4.5329E-02

95.0% spolehlivost

Spodní mez 1.6664E-01

Horní mez 3.5336E-O1

Uřezání 5% (pro P=0.05) 10% (pro=0.10) 40%(pro=0.40)

Průměr 3.9991E-01 3.6192E-01 2.5558E-01

Směr, odchylka 4.3211E-01 4.6437E-01 1.5949E-01

Rozptyl 1.8672E-01 2.1564E-01 2.5436E-02

Průměr, winsor. 4.3042E-01 4.3004E-01 2.5712E-01

St.odch. winsor. 3.9736E-01 4.1044E-01 7.2868E-02

Rozptyl, winsor. 1.5790E-01 1.6846E-01 5.3098E-03

95.0% spolehlivost

Spodní mez 2.2891E-01 1.7617E-01 1.7584E-01

Horní mez 5.7092E-01 5.4767E-01 3.3532E-01

3.3 ZÁVĚR

Soubor výsledků laboratorního stanovení pevnosti hornin zkouškou v prostém 
tlaku byl statisticky zpracován metodou jednorozměrných dat za účelem zjištění 
bodových a intervalových odhadů. Data byla nejprve analyzována pomocí spojité 
exploratorní analýzy, která pomocí diagnostických grafu odhaluje zvláštnosti dat. 
U testovaného souboru byly identifikovány odlehlé body, dále bylo zjištěno, že data 
nepochází z normálního rozdělení a jeví asymetrii.

Další analýza vstupních dat, tj. ověření základních předpokladů, spočívala 
v ověření předpokladu normality, nezávislosti a v detekci vybočujících hodnot. Jedním ze 
závěrů ověřování základních předpokladů bylo zamítnutí předpokladu normality, což 
znamená, že data nepochází z normálního rozdělení. Ověřením předpokladu nezávislosti 
dat byla testována vzájemná nezávislost výsledků. Předpoklad nezávislosti dat byl přijat, 
lze tedy učinit závěr, že se výsledky navzájem neovlivňují.

37



Zpravodaj Hnědé uhlí 11/98

Vstupní analýzou dat, exploratorní analýzou a ověřením základních předpokladů, 
bylo zjištěno, že rozdělení výběru dat se odlišuje od rozdělení normálního, dále data jeví 
asymetrii a rovněž byly zjištěny odlehlé hodnoty. Na základě tohoto zjištění lze učinit 
nekompromisní závěr, že pro výpočet bodového parametru nelze použit klasický 
aritmetický průměr.

Z výše uvedeného vyplynula nutnost zpracování dat matematickou transformací. 
Prostou mocninnou transformací a Box-Coxovou transformací byl vyčíslen opravený 
průměr, který je pro obě metody shodný. Při neplatnosti normality lze rovněž provést 
výpočet odhadů parametrů polohy i rozptýlení s využitím robustních metod. 
V následující tabulce je provedeno srovnání vypočtených jednotlivých odhadů polohy 
a rozptýlení.

Statistická charakteristika Bodový odhad Spodní mez Horní mez
Průměr 4.8492E-01 2.5335E-01 7.1650E-01

Medián 2.6000E-01 1.6664E-01 3.5336E-01
Opravený průměr po 
prosté mocninné transformaci

2.5865E-01 - -

Opravený průměr po Box- 
Coxově transformaci

2.5865E-01 - -

Průměr pro P=0.05 3.9991E-01 2.2891E-01 5.7092E-01
Průměr pro P=0.10 3.6192E-01 1.7617E-01 5.4767E-01
Průměr pro P=0.40 2.5558E-01 1.7584E-01 3.3532E-01

Z přehledu v tabulce je zřejmé, že rozdíl mezi klasickým a opraveným průměrem, 
případně i mediánem, je asi 50%. Z praxe je známo, že u většiny souboru, zejména 
v oblasti technických, nelze zpravidla očekávat normální rozdělení. Jakých chybných 
závěrů se lze dopustit v rozhodovacích procesech při použití klasických odhadů není již 
třeba dále komentovat.
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H. LINEÁRNÍ REGRESNÍ MODELY

1. Formulace lineárního regresního modelu

Cílem v řadě technických oborů je objasnění vztahu mezi měřenou, výstupní 
závisle proměnnou (vysvětlovanou) veličinou y a nastavovanými, vstupními nezávisle 
proměnnými (vysvětlujícími) veličinami x. Typ závislosti vyjádřený známou funkcí 
y = f (x, P), záleží na tom, jaké povahy jsou veličiny y a x.

K odhadu parametru regresní funkce se používají mnohé metody a postupy, ale 
nejčastěji jde o různé varianty známé metody nejmenších čtverců. Podle této metody se 
získají odhady parametrů regresní funkce minimalizací součtu čtverců reziduí, tj. 
odchylek skutečných a vypočítaných hodnot vysvětlované proměnné y.

Metoda nejmenších čtverců má optimální vlastnosti zajistých předpokladů:
a) Regresní parametry P mohou nabývat libovolných hodnot. V technické praxi 

však často existují omezení parametrů, která vycházejí z jejich fyzikálního 
smyslu.

b) Regresní model je lineární v parametrech a platí tzv. aditivní model měření 
y=xp+e, kde e jsou náhodné veličiny, které zahrnují jak chyby měření, tak 
i chyby modelu, vzniklé tím, že funkce předpokládaného modelu neodpovídá 
skutečnému „teoretickému“ modelu.

c) Žádné dva sloupce matice nenáhodných, nastavovaných hodnot, vysvětlujících 
proměnných nejsou kolineární, tj. rovnoběžné vektory.

d) Náhodné chyby mají nulovou střední hodnotu.
e) Náhodné chyby mají konstantní rozptyl, platí homoskedasticita.
f) Náhodné chyby jsou vzájemně nekorelované.
g) Náhodné chyby mají normální rozdělení.

Pokud platí prvních šest předpokladů, jsou odhady, získané minimalizací kritéria 
nejmenších čtverců, nejlepší nevychýlené lineární odhady regresních parametrů. 
V případě, že platí i poslední předpoklad, mají odhady normální rozdělení už pro 
konečné rozsahy výběru.

2. Statistické vlastnosti metody nejmenších čtverců
Bodové odhady jsou náhodné veličiny, které mají v praxi malý význam. 

Důležitější jsou konfidenční oblasti, nazývané také oblasti nebo intervaly spolehlivosti, 
ve kterých leží teoretická hodnota se zvolenou pravděpodobností (1-a). Stejně jako 
u jednorozměrných výběrů se volí hladina významnosti a 0.05 nebo 0.01. Této volbě 
odpovídají 95%ní nebo 99%ní intervaly spolehlivosti. Pro konstrukci konfidenčních pásů 
se používá Schéffeho metoda nebo metoda Working-Hottellinga.

S konstrukcí intervalů spolehlivosti úzce souvisí testování významnosti 
parametrů p Standardním výstupem většiny programů regresní analýzy je závěr 
Fisherova-Snedecorova F-testu o významnosti koeficientu determinace a výsledky 
Studentova t-testu o významnosti jednotlivých parametrů p. F-test určuje zároveň 
simultánní významnost všech složek vektoru p kromě absolutního členu. Mohou nastat 
tyto případy:
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a) F-test vychází nevýznamný, všechny t-testy vychází rovněž nevýznamné. Model se 
pak považuje za nevhodný, protože nevystihuje variability proměnné y.

b) F-test a všechny t-testy vychází významné. Model se považuje za vhodný vystižení 
variability proměnné y. Neznamená to ale, že je model správně navržen.

c) F-test vychází významný, ale t-testy nevýznamné u některých regresních parametrů. 
Model lze považovat za vhodný a provádí se případné vypouštění těch vysvětlujících 
proměnných x, pro které jsou parametry p nevýznamně odlišné od nuly.

d) F-test sice vychází významný, ale t-testy parametrů p indikují nevýznamnost všech 
vysvětlujících proměnných. To je paradox, protože formálně sice model jako celek 
vyhovuje, ale žádná z vysvětlujících proměnných není sama o sobě významná. Jde 
o důsledek multikolinearity.

Multikolinearita neznamená v pravém slova smyslu porušení předpokladů 
klasické metody nejmenších čtverců, ale souvisí pouze s předpokladem o pozitivní 
definitnosti matice. Je to situace, kdy jeden ze sloupců x matice je lineární kombinací 
několika ostatních sloupců. V přítomnosti multikolinearity nelze odděleně sledovat vliv 
jednotlivých vstupních proměnných x. Multikolinearita se vyskytuje často i u modelů 
dobře popisujících data, u polynomických modelů a dat z neplánovitých experimentů.

Základní příčinou vzniku multikolinearity je, že regresní model obsahuje 
nadměrný počet nezávislých proměnných, které vyjadřují stejné faktory. Dále může být 
multikolinearita způsobena nevhodným rozmístěním bodů, hodnoty nezávisle 
proměnných kolísají jen v malém rozmezí a jsou proto kolineární s vektorem 
odpovídajícím absolutnímu členu. Multikolinearitu může způsobit i fyzikální omezení 
v modelu nebo datech, kdy vznikají vazby mezi nezávisle proměnnými p ímo ve 
studovaném systému.

K posouzení vhodnosti navrženého lineárního modelu s ohledem na možnou 
multikolinearitu navrhl Scott testační charakteristiku Mj. Na základě simulačních 
experimentů byla vytvořena následující pravidla k posouzení stupně multikolinearity:

1. Pokud je Mt> 0.8, je model z hlediska multikolinearity nevyhovující a je třeba 
provést jeho případnou úpravu.
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multikolinearity málo vyhovující a je vhodná jeho případná úprava.
3. Pokud je Mj < 0.33, není model výrazně ovlivněn multikolinearitou a není 

třeba ho upravovat.

Test pomocí Scottova kritéria MT je vhodný především tam, kde je zapotřebí 
stanovit ty vysvětlující proměnné, které významně přispívají k objasnění variability 
proměnné y. Pokud jde pouze o úlohu aproximace dat empirickým modelem, např. 
polynomem, není třeba k hodnotám MT přihlížet.

3. Regresní diagnostika
Při vyhodnocení lineárních i nelineárních regresních modelů se často užívá 

metody nejmenších čtverců. Tato metoda však ještě nezajišťuje nalezení přijatelného 
modelu, a to jak ze statistického, tak fyzikálního hlediska. Zdrojem problému jsou složky 
tzv. regresního tripletu (data, model, metoda odhadu).

Metoda nejmenších čtverců poskytuje optimální výsledky jenom při současném
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splnění předpokladů o datech a o regresním modelu. Pokud tyto předpoklady nejsou 
splněny, je metoda nejmenších čtverců nevhodná. Regresní diagnostika obsahuje 
postupy k identifikaci:

a) kvality dat pro navržený model,
b) kvality modelu pro navržená data,
c) splnění základních předpokladů metody nejmenších čtverců.

Základní rozdíl mezi regresní diagnostikou a klasickými testy spočívá v tom, že 
u regresní diagnostiky není třeba přesně formulovat alternativní hypotézu a jsou přitom 
odhaleny typy odchylek ideálního regresního tripletu. Tímto pojetím se naše regresní 
diagnostika blíží spíše k exploratorní regresní analýze, která vychází z faktu, že „ uživatel 
ví o analyzovaných datech přece jenom více než počítač“. Počítač slouží jako nástroj 
analýzy dat, modelu a metody odhadu. Model je navrhován interaktivně spoluprací 
uživatele s programem na osobním počítači. Tím by měl být omezen vznik formálních 
regresních modelů, které nemají fyzikální smysl a jsou v technické praxi nepoužitelné.

3.1 Využití průzkumové analýzy dat
O metodách průzkumové (exploratorní) analýzy jednorozměrných dat bylo 

pojednáno v předchozím článku. V regresní analýze jsou využívány tyto metody:
a) pro určení statistických zvláštností jednotlivých proměnných nebo reziduí,
b) k posouzení „párových“ vztahů mezi všemi sledovanými proměnnými, 
c) k ověření předpokladů o rozdělení proměnných.

K orientačnímu posouzení vztahů mezi jednotlivými proměnnými se užívá 
rozptylových grafů, kde se na osy vynášejí přímo hodnoty sledovaných proměnných. 
Informace o multikolinearitě lze získat vynesením dvojic vysvětlujících proměnných. 
Přibližně lineární závislost zde indikuje silnou multikolinearitu. Na druhé straně však 
může vést vynášení y proti x k mylným závěrům o nelinearitě modelu, který je ve 
skutečnosti lineární.

K ověření normality dat se často používá Q-Q grafu. Mezi základní techniky 
průzkumové analýzy patří i stanovení volby rozsahu a rozmezí dat, jejich variability 
a přítomnosti vybočujících pozorování. Ktomu lze např. využít grafů rozptýlení 
s kvantily a řady dalších postupů. Přes svoji jednoduchost umožňuje průzkumová analýza 
identifikovat ještě před vlastní analýzou:

a) nevhodnost dat, tj. malé rozmezí nebo přítomnost vybočujících bodů,
b) nesprávnost navrženého modelu (skryté proměnné),
c) multikolinearitu, 
d) nenormalitu.

3.2 Posouzení kvality dat
Kvalita dat úzce souvisí s užitým regresním modelem. Při posuzování se sleduje 

zejména výskyt vlivných bodů, které jsou hlavním zdrojem řady problémů, především 
zkreslení odhadů a růst rozptylů až k naprosté nepoužitelnosti regresních odhadů 
parametrů.Vlivné body ovlivňují většinu výsledků regrese a lze je rozdělit do tří 
základních skupin:

a) Hrubé chyby, které jsou způsobeny měřenou veličinou (vybočující 
pozorování) nebo nevhodným nastavením vysvětlujících proměnných
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(extrémy). Jsou obvykle důsledkem chyb při manipulaci s daty.
b) Body s vysokým vlivem jsou speciálně vybrané body, které byly přesně 

změřeny a obvykle rozšiřují predikční schopnosti modelu.
c) Zdánlivě vlivné body vznikají jako důsledek nesprávně navrženého regresního 

modelu. Podle toho, kde se vlivné body vyskytují, lze provést dělení na: 
1. vybočující pozorování, které se na ose y výrazně liší od ostatních,
2. extrémy, které se liší v hodnotách na ose x nebo v jejich kombinaci 

(v případě multikolinearity) od ostatních bodů.

Vyskytují se však i body, které jsou jak vybočující, tak i extrémní. O jejich 
výsledném vlivu však rozhoduje zejména to, že jsou extrémy. K identifikaci vlivných 
bodů typu vybočujícího pozorování se využívá především reziduí a k identifikaci extrémů 
pak diagonálních prvků projekční matice.

Statistická analýza reziduí vychází z předpokladu, že jde o odhady chyb. Pomocí 
reziduí se tak ověřují vlastnosti chyb, i když tento přístup není zcela správný, neboť 
rezidua nejsou nezávislá, i když chyby nezávislé jsou. Rezidua jsou rozlišována na 
klasická, normovaná, standardizovaná, Jackknife, predikovaná a rekurzívní. Různé 
typy reziduí se liší co do vhodnosti k diagnostickým účelům:

1) k identifikaci heteroskedasticity postačují standardizovaná rezidua,
2) k určení vybočujících bodů pak Jackknife rezidua nebo predikovaná rezidua,
3) k detekci autokorelace rekurzívní rezidua.

K analýze reziduí se užívá především různých typů grafu. Mezi klasické patří tři 
základní typy grafu reziduí, které mohou indikovat nesprávnost navrženého modelu, 
sezónní trendy, heteroskedasticitu nebo vlivné body v datech. Pokud se v těchto grafech 
reziduí objeví „mrak“ bodů, je indikována správnost metody nejmenších čtverců. Různé 
druhy obrazců bodů v grafu indikují převážně nesprávnost v datech nebo nesprávnost 
modelu.

K identifikaci různých typů vlivných bodů se používá řada grafu, které kombinují 
rozličné typy reziduí s prvky tzv. projekční matice:

1) Graf predikováných reziduí
7^ Wi11iqmsův Graf
3) Pregibonův graf
4) MCCullohův-Meeterův graf
5) Indexové grafy
6) Rankitové grafy

Při posuzování vlivných bodů je třeba mít na paměti, že mohou nestejně výrazně 
ovlivňovat různé charakteristiky regrese. Například body ovlivňující výrazně predikci 
nemusí být z hlediska rozptylu parametrů vůbec vlivné. Stupeň vlivu jednotlivých bodů je 
třeba posuzovat vždy s ohledem na to, které charakteristiky regrese ovlivňují. 
K identifikaci vlivných bodů existuje řada dalších diagnostik, které lze rozdělit podle 
dvou základních přístupů:

a) První je založen na sledování změn, ke kterým dojde při vypuštění 
jednotlivých bodů.

b) Druhý přístup vychází z platnosti lineárního regresního modelu se speciální 
strukturou rozptylů chyb.

Podrobný popis těchto diagnostik lze nalézt v příslušné odborné literatuře.
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3.3 Posouzení kvality navrženého modelu
Kvalitu regresního modelu lze posoudit v případě jedné vysvětlující proměnné x 

přímo z rozptylového grafu závislosti y na x. V případě více vysvětlujících proměnných 
mohou však rozptylové grafy mylně indikovat nelinearitu i u lineárního modelu. Z řady 
různých grafu k posouzení vztahu y a x jsou dva základní:

a) parciální regresní grafy
b) parciální reziduálni grafy

Parciální regresní grafy jsou zařazeny mezi základní nástroje počítačové 
interaktivní analýzy regresních modelů. Vyjadřují závislost mezi y a zvolenou vysvětlující 
proměnnou při statisticky neměnném vlivu ostatních vysvětlujících proměnných. Tyto 
grafy umožňují nejen posouzení kvality navrženého modelu, ale indikují i přítomnost 
vlivných bodů a nesplnění předpokladů klasické metody nejmenších čtverců.

Parciální reziduálni grafy se označují také jako grafy „komponenta+reziduum“. 
Jsou speciální analogií parciálního regresního grafu. Jedná se o závislost parciálních 
reziduí přímo na proměnné x. Parciální reziduálni grafy se doporučují především 
k indikaci rozličných typů nelinearity v případě nesprávně navrženého regresního 
modelu.

Dalším testem, který vychází přímo z reziduí, je znaménkový test. Nesprávnost 
navrženého regresního modelu se projeví nenáhodností reziduí a tuto nenáhodnost lze 
testovat právě znaménkovým testem, při němž se určuje počet sekvencí, kde mají rezidua 
stejná znaménka.

3.4 Ověření předpokladů nejmenších čtverců
Průvodním jevem řady měřených dat je heteroskedasticita. Heteroskedasticita 

znamená porušení předpokladu o konstantnosti rozptylu chyb. Je-li rozptyl chyb 
v datech konstantní, nazývají se pak data homoskedastická. Rozptyl měření bývá 
rostoucí funkcí velikosti proměnné y, protože relativní přesnost měření je obyčejně 
konstantní. Tento typ heteroskedasticity lze odhalit v grafu závislosti čtverce reziduí na y. 
Vzniká obrazec s výrazným lineárním nebo nelineárním trendem.

Předpokladem pro správné vyhodnocení regresního modelu je nezávislost 
pozorování, tedy i vzájemná nezávislost chyb. Není-li tento předpoklad splněn, hovoří se 
o autokorelaci. S autokorelací se lze setkat především v případech, kdy se výběrová 
pozorování vztahují k různým časovým okamžikům nebo intervalům (časové řady), 
v praxi například při sledování parametrů nějakého zařízení pracujícího v kontinuálním 
režimu. Autokorelaci lze testovat, nejpoužívanější je Durbinův-Watsonův test a Waldův 
test. Vysoká hodnota autokorelace může být i důsledkem nesprávně navrženého 
regresního modelu.

K ověření normality chyb se užívá již zmíněného Q-Q grafu, v němž se na osu 
pořadnic vynáší pořádkové statistiky reziduí a na osu souřadnic kvantily normovaného 
normálního rozdělení pro pořadové pravděpodobnosti. Pokud je zjištěno, že chyby 
nemají normované normální rozdělení, může to být způsobeno jiným rozdělením chyb 
nebo Častěji přítomností vlivných bodů.
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4. Postupy při porušení předpokladů metody nejmenších čtverců
V kapitole 1. byly uvedeny předpoklady, za kterých vede metoda nejmenších 

čtverců k nejlepším nestranným lineárním odhadům. Z těchto předpokladů vychází také 
konstrukce intervalů spolehlivosti a testů významnosti. V praxi však bývají některé 
předpoklady porušeny. Nej důležitější diagnostické postupy k odhalení porušení 
předpokladů metody nejmenších čtverců jsou uvedeny předchozí kapitole 3.

V řadě praktických úloh jsou na regresní parametry kladena omezení zajišťující 
jejich fyzikální smysl a interpretovatelnost. Nejčastějším omezením v praxi je požadavek, 
aby regresní model procházel počátkem. Dalším příkladem jsou často požadované kladné 
hodnoty parametrů. Do této skupiny patří tedy úlohy, kdy některé parametry musí 
nabývat zadaných hodnot, dále kdy některé parametry musí zachovávat předepsané 
vzájemné poměry, součty nebo rozdíly některých parametrů se musí rovnat zadanému 
číslu nebo regresní model musí procházet zadanými body o známých souřadnicích. Pro 
řešení těchto omezení se používá technika Lagrangeových multiplikátorů, neboli metoda 
podmínkových nejmenších čtverců (MPNČ). Při nekonstantnosti rozptylu se využívá 
metody vážených nejmenších čtverců (MVNČ). Metody zobecněných nejmenších 
čtverců (MZNČ) se využívá při autokorelaci, metody racionálních hodností 
u multikolinearity. Metoda rozšířených nejmenších čtverců (MRNČ se používá 
v případě, že všechny proměnné jsou zatížené náhodnými chybami Jsou-li rozdělení dat 
jiná než normální a data s vybočujícími hodnotami a extrémy, pak se využívá robustních 
metod. Podrobný popis těchto metod lze nalézt v odborné literatuře.

5. PŘÍKLAD STATISTICKÉHO ZPRACOVÁNÍ MODELU LINEÁRNÍ 
REGRESE

5.1 Zadání: Pro hodnocení rozpojitelnosti je používána jednotná klasifikace sedimentů 
JKS. Hodnotícím kritériem je index JKS, jehož hodnota je stanovena na základe 
výsledků následujících laboratorních zkoušek: určení obsahu jílových minerálů 
a karbonátů, stanovení objemové hmotnosti a vlhkosti, zkoušky odporu v penetraci 
a pevnosti v prostém tlaku. Uvedené zkoušky jsou ve stejném pořadí uloženy ve 
vstupním souboru a představují nezávisle proměnné xi až X6 a index JKS představuje 
závisle proměnnou y. Vstupní data nejsou pro svoji rozsáhlost v článku uvedena.

5.2 Řešení: U vstupních dat bylo provedeno statistické zpracování pomocí software 
Adstat

VSTUP
(1) ZVOLENÁ STRATEGIE REGRESN íANALÝZY:

Omezení, P 1.0000E-34

Transformace Ne

Váhy Ne

Absolutní člen zahrnut Ano

Uvedené podmínky se definují pro zajištění maximální flexibility lineární regrese.
Omezení P je omezení na vlastní čísla. Implicitní hodnota je 1E-34. Pro běžné 

úlohy odpovídá tato volba klasické metodě nejmenších čtverců. Čím je tento parametr 
vyšší, tím je také vyšší vychýlení odhadů.
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(2) PODMÍNKY A KVANTILY PRO STATISTICKÉ TESTY:

Hladina významnosti, alfa 0.050

Počet bodů, n 67

Počet parametrů, m 6

Kvantil Studentova rozdělení t(l-alpha/2,n-m) 2.000

Kvantil rozd. Chí-kvadrát Chi-square(l-alpha,m) 14.067

VÝSTUP
(1) PŘEDBĚŽNÁ STATISTICKÁ ANALÝZA:

Proměnná Průměr Směrodatná odchylka Párový korelační 
koeficient

Spočtená 
hladina 

významnosti

Y 1.0276E+02 4.1375E+00 1.0000 —

xl 6.1761E+01 1.2143E+01 -0.4050 0.001

x2 6.9104E+00 7.3808E+00 0.5123 0.000

x3 2.1184E+00 1.0798E-01 0.8257 0.000

x4 3.2096E+01 5.9861E+00 -0.7177 0.000

x5 2.2888E+02 1.0395E+02 0.9051 0.000

x6 2.4075E+00 3.7446E+00 0.5705 0.000

Pro všechny proměnné jsou vypočteny průměry, směrodatné odchylky a párové 
korelační koeficienty všech vysvětlujících proměnných (x;) vzhledem k vysvětlované 
proměnné (y) a párové korelační koeficienty mezi vysvětlujícími proměnnými.

Párové korelační koefic 
vysvětlujících

ienty mezi dvojicemi 
proměnných

Spočtená hladina významnosti

xl versus x2 -2.7478E-01 0.024

xl versus x3 -6.6220E-01 0.000

xl versus x4 6.2289E-01 0.000

xl versus x5 -4.1477E-01 0.000

xl versus x6 -1.1705E-01 0.346

x2 versus x3 3.4107E-01 0.005

x2 versus x4 -2.0311E-02 0.870

x2 versus x5 2.8591E-01 0.019

x2 versus x6 1.3679E-01 0.270

x3 versus x4 -8.2549E-01 0.000

x3 versus x5 7.8489E-01 0.000
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x3 versus x6 3.1669E-01 0.009

x4 versus x5 -7.6367E-01 0.000

x4 versus x6 -2.8004E-01 0.022

x5 versus x6 3.4719E-01 0.004

(2) INDIKACE MULTIKOLINEARITY:

Č

lil
Vlastní čísla 

koreb matice l[j]

Čísla podmíněnosti 
KDJ

Variance inflation 

factor VIF[j]

Vícenás.korei. 

koef pro X[j ]

1 1.0840E-01 3.0337E+01 2.2284E+00 0.7425

2 1.5502E-01 2.1214E+01 1.7191E+00 0.6468

3 5.3361E-01 6.1629E+00 5.4598E+00 0.9038

4 9.2525E-01 3.5542E+00 5.7537E+00 0.9090

5 9.8915E-01 3.3246E+00 3.6278E+00 0.8511

6 3.2886E+00 1.0000E+00 1.1569E+00 0.3683

Maximální číslo podmíněnosti K: 3.0337E+01 

(K[jJ, K > 1000 indikuje silnou multikolinearitu) 

(VTF0] >10 indikuje silnou multikolinearitu)

K identifikaci multikolinearity bylo použito číslo podmíněnosti K a faktor VIP. 
Jsou-li hodnoty K a W vyšší než uvedené meze, pak je mezi nezávisle proměnnými 
silná lineární závislost, která zhoršuje statistické vlastnosti odhadů a v některých 
případech může znehodnotit i celou analýzu. V našem případě nebyla multikolinearita 
pomocí K a VIF zjištěna.

(3) ODHADY PARAMETRŮ A TESTY VÝZNAMNOSTI:

Parametr Odhad Směrodatná 
odchylka

Test Ho: B[j] = 0 vs. HA: B[j] o 0

t-kriterium hypotéza Ho je Hlad. výz.

B[ 0] 8.2360E+01 2.7951E+00 2.9466E+01 Zamítnuta 0.000

B[l] 6.2429E-02 6.3875E-03 9.7736E+00 Zamítnuta 0.000

B[ 2] 1.8137E-01 9.2303E-03 1.9649E+01 Zamítnuta 0.000

B[3] 7.3820E+00 1.1244E+00 6.5653E+00 Zamítnuta 0.000

B[4] -1.6450E-01 2.0821E-02 -7.9006E+00 Zamítnuta 0.000

B[ 5] 1.8550E-02 9.5208E-04 1.9484E+01 Zamítnuta 0.000

B[6] 2.8530E-01 1.4925E-02 1.9H6E+01 Zamítnuta 0.000
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V tabulce (3) jsou uvedeny odhady parametrů, jejich směrodatné odchylky 
a t-testu pro testování významnosti individuálních parametrů. Verbálně je vyjádřen 
výsledek testu nevýznamnosti, nulová hypotéza je zamítnuta, parametry lze tedy 
považovat za významné. V posledním sloupci je pak zpětně spočítaná hladina 
významnosti t-testu.

(4) STATISTICKÉ CHARAKTERISTIKY REGRESE:

Vícenásobný korelační koeficient, R 9.9526E-01

Koeficient determinace, RA2 9.9054E-01

Predikovaný korelační koeficient, RpA2 9.9304E-01

Střední kvadratická chyba predikce, MEP 2.3392E-01

Akaikeho informační kritérium, AIC -1.0896E+02

V tabulce (4) je vyčíslen vícenásobný koeficient a koeficient determinace, což je 
čtverec vícenásobného korelačního koeficientu, dále je spočítán predikovaný korelační 
koeficient, střední kvadratická chyba predikce a Akaikeho informační kritérium. ■

Střední kvadratická chyba predikce, MEP se používá k ověření linearity modelu. 
Vhodný model indikuje nejnižší hodnota MEP. Nelinearitu lze dobře indikovat statistikou 
AIC. Za nejvhodnější je považován model, pro který je AIC minimální. Predikovaný 
koeficient determinace Rp2 je vypočten pomocí statistiky MEP a jeho vysoká hodnota 
potvrzuje vhodnost zvoleného modelu.

(5) ANALÝZA KLASICKÝCH REZIDUÍ:

Bod Měřená 

hodnota

Predikovaná 

hodnota

Směrodatná 

odchylka

Klasické

reziduum

Relativní 

reziduum

i yexp[i] yvyp[i] s(yvyp[i]) e[i] er[i]

1 9.9000E+01 9.9302E+01 8.7963E-02 -3.0178E-01 -3.0483E-01

2 1.0100E+02 1.0105E+02 1.0576E-01 -5.3766E-02 -5.3234E-02

66 1.0400E+02 1.0456E+02 6.7685E-02 -5.6395E-01 -5.4226E-01

67 1.0100E+02 1.0113E+02 9.4521E-02 -1.3OO5E-O1 -1.2877E-01

Reziduálni součet čtverců, RSC 1.0691E+01

Průměr absolutních hodnot reziduí, Me 3.1695E-01

Průměr relativních reziduí, Mer 3.0956E-01

Odhad reziduálního rozptylu, sA2(e) 1.7819E-01

Odhad směrodatné odchylky reziduí, s(e) 4.2212E-01

Odhad šikmosti reziduí, gl(e) 4.8786E-03

Odhad špičatosti reziduí, g2(e) 2.9913E+00
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V tabulce (5) je provedena analýza klasických reziduí naměřených a vypočítaných 
(predikovaných) hodnot, směrodatné odchylky měření, klasická a relativní rezidua. Platí, 
že pokud je naměřená hodnota větší než vypočítaná, je reziduum kladné a naopak.

V tabulce (5) jsou uvedeny hodnoty pouze pro vzorky 1,2 a 66, 67 jako ukázka. 
Hodnoty zbývajících 63 vzorků jsou pro svoji rozsáhlost ze článku vypuštěny. Různé 
typy reziduí se liší co do vhodnosti k diagnostickým účelům na základě sestrojených 
a dále uvedených grafu.

V následující tabulce (6) jsou uvedeny výsledky testování regresního tripletu. 
Testy zahrnují statistiku F-testu významnosti vícenásobného korelačního koeficientu, 
statistika M pro testaci stupně multikolinearity, statistika SF pro test heteroskedasticity 
a statistika L pro ověření normality reziduí. Dále jsou provedeny testy autokorelace 
a znaménkový test trendu v reziduích. Normalita dat byla prokázána. Rezidua vykazují 
homoskedasticitu, nejsou autokorelována a nevykazují trend. Scottovo kritérium 
multikolinearity je větší než hodnota 0.33, ale menší než 0.8. V ADSTATu v bodě (2) 
není multikolinearita faktorem VIF indikována.

(6) TESTOVÁNÍ REGRESNÍHO TRIPLETU (DATA + MODEL + METODA):

Fisher-Snedocorův test významnosti regrese,F 1.0468E+03

Tabulkový kvantil, F(l-alpha,m-l,n-m) 2.2541E+00
Závěr Navržený model je významný.

Spočtená hladina významnosti 0.000
Scottovo kriterium multikolinearity, M 4.8111E-01

Závěr Navržený model není korektní.
Cook-Weisbergův test heteroskedasticity, Sf 5.9340E-02

Tabulkový kvantil, ChiA2(l-alpha,l) 3.8415E+00
Závěr Rezidua vykazují homoskedasticitu.

Spočtená hladina významnosti 0.808
Jarque-Berraův test normality reziduí, L(e) 4.7628E-04

Tabulkový kvantil, ChiA2(l-alpha,2) 5.9915E+00
Závěr Normalita je prokázána.

Soočtená hladina významnosti 1.000
vv? * v O , . _ _ y_____ 1_____XXľ,
W <t lilií V 1^5*1 ii li Íl>i*UÍ ViiiCC* VV <í

c ''•'iv-1- (V

Tabulkový kvantil, ChiA2( 1 -alpha, 1) 3.8415E+00
Závěr Rezidua nejsou autokorelována.

Spočtená hladina významnosti 0.451
Znamékový test, Dt -1.2295E+00

Tabulkový kvantil, N(l-alpha/2) 1.6449E+00
Závěr Rezidua nevykazují trend.

Spočtená hladina významnosti 0.109

V tabulce (7) je uveden přehled vlivných bodů, který se používá k identifikaci 
vlivných a odlehlých bodů. Ostatní hodnoty zde nejsou pro svoji rozsáhlost uvedeny. 
Dále jsou uvedeny věrohodnostní vzdálenosti pro první a poslední dva vzorky jako 
ukázka. Věrohodnostní vzdálenosti se rovněž používají při diagnostice vlivných 
a podezřelých bodů.

Z numerické analýzy dat z kritiky dat v bodě č. 7, tj. indikace vlivných bodů, byly
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vyhodnoceny celkem 3 outliery určené lackknifeovým reziduem. Jedná se o body č. 5, 6 
a 54.

(7) INDIKACE VLIVNÝCH BODŮ: (* indikuje odlehlý nebo vlivný bod)
Bod

I

Standardizované 
reziduum 

eS[i]

Jackknife 
reziduum

eJ[i]

Predikované 
reziduum 

eP[i]

Diagonální 
prvky

H[i, i]

5 -2.4288E+00 -2.5364E+00* -1.0458E+00 3.8938E-02

6 2.5543E+00 2.6830E+00* 1.1055E+00 4.8705E-02

7 4.8362E-01 4.8051E-01 2.3166E-01 2.2339E-01*

24 -1.4886E+00 -1.5041E+00 -7.2368E-01 2.4609E-01*

33 1.5139E+00 1.5308E+00 1.0260E+00 6.1203E-01*

34 2.6367E-01 2.6161E-01 1.2854E-01 2.5028E-01*

35 4.1889E-01 4.1599E-01 2.0039E-01 2.2137E-01*

39 -6.7040E-01 -6.6730E-01 -1.4438E+00 9.6158E-01*

43 1.3059E-01 1.2952E-01 6.2138E-02 2.1296E-01*

54 -2.1581E+00 -2.2283E+00* -9.2489E-01 2.9814E-02

62 -8.0610E-01 -8.0372E-01 -5.5338E-01 6.2190E-01*

67 -3.1612E-01 -3.1374E-01 -1.3692E-01 5.0140E-02

Bod

I

Zobecněné diag. 
prvky

Hm[i,i]

Cookova 
vzdálenost

nni

Atkinsonova 
vzdálenost

Affl

Vliv na 
predikci

DF[i]

24 2.7393E-01* 1.0332E-01 2.5159E+00* -8.5935E-01*

33 6.2685E-01* 5.1652E-01* 5.6289E+00* 1.9226E+00*

34 2.5114E-01* 3.3154E-03 4.4253E-01 1.5115E-01

39 9.6187E-01* 1.6070E+00* 9.7740E+00* -3.3385E+00*

62 6.2600E-01* 1.5269E-01 3.0178E+00* -1.0308E+00*

Bod

i

Věrohodnostní vzdálenosti

LD(b)[i]___________ LD(sA2)[i] LD(b,sA2)[i]

1 2.7078E-02 1.2412E-03 2.8161E-02

2 1.2945E-03 7.2520E-03 8.5275E-03

66 5.3963E-02 8.5908E-03 6.3444E-02

67 5.8903E-03 5.9626E-03 1.1775E-02
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5.3 DISKUSE KE GRAFICKÉMU VÝSTUPU
Na obr. 1 je uveden graf predikce rezidua, autokorelace a graf heteroskedasticity. 

Na grafu predikováných reziduí je nakreslen graf reziduí proti hodnotám určeným 
z regresního modelu. V grafu autokorelace jsou proti sobě vynášena postupně sousední 
rezidua. Pokud vznikne přibližně lineární obraz, je indikována silná autokorelace prvního 
řádu. V našem testovaném případě nebyla autokorelace zjištěna. Heteroskedasticita je 
indikována pokud vznikne typický klínový obrazec. V našem případě není 
heteroskedasticita indikována.

Indexové grafy na obr. 2 mají informativní charakter, graf index-normalizovaná 
rezidua indikuje outliery a graf index-prvky hat matice indikuje přítomnost extrémů. Pro 
vlivné body jsou hodnoty těchto statistik výrazně odlišné od ostatních.

Rankitové grafy na obr. 3 upozorňují na vybočující hodnoty. Graf rankit- 
Andrews, rankit-predikovaná rezidua a rankit-Jackknife rezidua indikují shodně 
vybočující bod č.39, 33 a případně i 6.

Při analýze grafu vlivných bodů na obr. 4 a 5 byly identifikovány outliery 
i extrémy. Graf predikovaných reziduí indikuje jeden extrém, bod č.33. Pregibonův 
graf indikuje outliery a extrémy dohromady, z tohoto grafu byly vyhodnoceny tři vlivné 
body, č.33, 39 a 62. Williamsůw graf indikuje tři extrémy, bod č.33, 39 a 62 a tři 
odlehlé body, č. 55, 6 a 54. McCulloh-Meeterůw graf určuje dva extrémy, č.33 a 39. 
L-R graf indikuje tři extrémy, body č. 33, 39 a 62. Z grafické analýzy lze vyhodnotit 
pouze extrémy, outliery nebyly prokázány.

Na základě výsledků jak numerické, tak grafické kritiky dat, nebude z výpočtu 
vypuštěn žádný odlehlý bod. Rovněž vzhledem ke způsobu získání dat (viz zadání) nelze 
vyloučit ze souboru žádnou hodnotu.
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jks

Graf heteroskedasticitg

Obr. 1 Graf predikce - rezidua, autokorelace a heteroskedasticity
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Obr. 2 Indexové grafy
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Obr. 3 Rankitové grafy
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Obr. 4 Grafy vlivných bodů
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Obr. 5 Graf vlivných bodů
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5.4 ZÁVĚR
Jako příklad lineární regrese byla vybrána ukázka z praxe, týkající se ověření 

vztahů mezi výsledky laboratorních zkoušek a indexem jednotné klasifikace sedimentů.

Statistickou analýzou byl vyčíslen vícerozměrný lineární regresní model, který 
byl získán statistickým zpracováním vstupních dat po předchozím testování regresního 
tripletu, data + model + metoda, který obsahuje důležité statistické testy pro posouzení 
kvality dat a kvality vyčísleného regresního modelu.

Ze statistické analýzy vyplývá, že index jednotné klasifikace sedimentů je závislý 
na všech šesti zadaných parametrech xi až X6 a vyčíslený regresní model má tvar:

y = 82.360( ± 2.795) + 6.2429.10"2(+6.3875.10"3) x, + 1.8137.10'( + 9.2303.10"3) x2 + 
7.3820 (+1.1244) x3- 1.6450.10"1 (±2.0821.102) X4+ 1.8550.102( ± 9.5208.10 4) x5 
+ 2.8530.10"1 (+1.4925.10 2) x6

kde y je index jednotné klasifikace sedimentů
xi obsah jílových minerálů (%)
x2 obsah karbonátů (%)
x3 objemová hmotnost (g.cnť3)

X4 vlhkost v % objemu (%)
x5 odpor v penetraci (N.cnf3)
X6 pevnost v prostém tlaku (MPa)

Podobným způsobem lze zpracovat jednorozměrné lineární regresní modely 
a jednorozměrné lineární kalibrace, kdy je hledán vztah jednou vstupní nezávisle 
proměnnou a výstupní závisle proměnnou. Dále lze provádět tímto postupem i validaci 
nových analytických metod.
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in. NELINEÁRNÍ REGRESNÍ MODELY

1. Formulace nelineárního regresního modelu
V praxi se pomocí nelineárních regresních modelů řeší řada technických 

a přírodovědných úloh. Mezi základní patří:
1. Konstrukce kalibračních modelů, jsou-li hodnoty y nelineární odezvou 

měřícího přístroje na změnu měřené fyzikální veličiny nastavitelné 
proměnné x.

2. Ověření teoretických modelů popisujících základní fyzikálně-chemické 
zákonitosti.

3. Tvorba empirických modelů, založená na hledání nelineární závislosti mezi 
vysvětlovanou proměnnou y a vysvětlujícími proměnnými x.

Podle typu úlohy se volí přístup k procesu tvorby regresního modelu f (x, p). 
Vlastní úloha se formuluje s ohledem na regresní triplet, zadaná data, navržený model 
a kritérium regrese, podobně jako u lineárních modelu. Jde vlastně o hledání modelu 
f (x, p) na základě zadaných dat a zvoleného kritéria regrese. V řadě případů je model 
f (x, P) znám a regresní úloha je zjednodušena na konstrukci odhadů b parametrů p. 
Narozdíl od lineárních regresních modelů mají parametry p v nelineárních regresních 
modelech většinou rozhodující roli.

Zatímco u lineárních modelů nemívají regresní parametry fyzikální smysl a jsou 
často pouhými numerickými koeficienty, mají parametry v nelineárních modelech často 
přesný fyzikální význam. Jejich číselné hodnoty jsou hlavním cílem regresní analýzy, 
například rovnovážné konstanty (disociační konstanty, součiny rozpustnosti, konstanty 
stability) reakčních produktů, rychlostní konstanty u kinetických modelů nebo neznámé 
koncentrace u titračních křivek apod.

Pojmem lineární regresní model se označuje model, který je lineární kombinací 
modelových parametrů. To znamená, že i lineární model může být z hlediska průběhu 
modelové funkce nelineární. Např. model f (x ,p)= pi+ p2 sin (x) má sinusový průběh 
a přesto je vzhledem k parametrům pi a p2 lineárním regresním modelem.

Pro lineární regresní modely platí podmínka:
ÔJ (x, P)

gj= ----------------- = konst. j=l,...,m(l)
SPj

Pokud je aspoň jeden parametr pj parciální derivace gj jeho funkcí, jde 
o nelineární regresní model

Nelineární regresní modely se člení na neseparabilní, separabilní a vnitřně 
lineární modely. Neplatí-li podmínka (1) pro žádný parametr modelu, pak se jedná 
o neseparabilní model. Platí-li podmínka (1) aspoň projeden modelový parametr, pak se 
jedná o separabilní model. Vnitřně lineární modely jsou sice nelineární, ale lze je korektní 
transformací neboli reparametrizací převést na lineární regresní model. Reparametrizace 
znamená transformaci parametrů p do nových y, které jsou funkčně spjaty s původními 
parametry p. Vhodnou reparametrizací lze odstranit řadu numerických i statistických 
problémů regrese. Z neseparabilních modelů lze často reparametrizací získat separabilní 
modely a naopak. V praxi se vyčleňují ještě modely linearizovatelné, které lze vhodnou
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transformací převést na lineární regresní model. Bodové odhady z linearizovaných 
regresí se pak používají pouze jako výchozí odhady.

K bodovému odhadu regresních parametrů nelineárního modelu se nejčastěji 
používá metoda nejmenších čtverců, přičemž získané bodové odhady jsou nejlepší 
nestranné, jestliže za předpokladů platnosti uvedených v předchozím článku v první 
kapitole účelová funkce nabývá absolutního minima. Hodnota účelové funkce je 
označována jako globální extrém (minimum), jestliže se pro daná data jedná o nejmenší 
možnou hodnotu odpovídající bodovému odhadu parametrů z oboru platnosti regresní 
funkce. Kromě globálního extrému existují rovněž lokální extrémy a obecně není 
zaručeno, že nalezený extrém je globální. Proces hledání extrému účelové funkce se 
nazývá optimalizace a nalezené bodové odhady, vyhovující cíli optimalizace, se nazývají 
optimální odhady.

2. Optimalizační metody
Optimalizační metody se dělí podle způsobu hledání optimálních odhadů na 

derivační a nederivační (komparativní). Derivační metody vyšetřují okolí posledního 
odhadu prostřednictvím derivace účelové funkce podle parametrů a na základě 
kvantitativního vyhodnocení se vytváří nový odhad. Při komparativních metodách se 
parametry mění podle určitých pravidel a oprava se provádí pouze na základě porovnání 
změny účelové funkce (zlepšení, zhoršení) po poslední změně parametru. Zvláštní 
skupinu tvoří algoritmy pro speciální případy (jiná kritéria regrese, robustní odhady). 
Podle toho, kolik parametrů je optimalizováno, dělí se optimalizační metody na 
jednorozměrné a vícerozměrné.

Při optimalizaci nastává několik problémů. Prvním problémem je tzv. 
renundance neboli přeurčenost modelu. Derivace gj v rovnici (1) mají význam míry 
citlivosti parametru pj v modelu f(x,p). Míry citlivosti parametrů slouží především 
v předběžné analýze nelineárních regresních modelů k posouzení jejich kvality a odhalení 
renundance (přeurčení), způsobené nadbytečným počtem parametrů. Jde o analogii 
multikolinearity u lineárních regresních modelů.

Dalším problémem je rychlost konvergence optimalizační metody, která je 
spojena se spotřebou resp. nalezením extrému v rozumném čase. Rychlost konvergence 
souvisí se vzdáleností odhadu od extrému. Ve větší vzdálenosti konvergují lépe 
komparativní metody, blízko extrému naopak metody derivační.

Zvláštním problémem při optimalizaci jsou tzv. vázané extrémy. V tomto případě 
je řešení podmiňováno splněním nějakých dalších podmínek, např. fyzikální reálnosti 
optimalizovaných parametrů (kladné výsledky měření) nebo dokonce možností výpočtu 
účelové funkce (kladné argumenty logaritmu). Tento problém se při výpočtu řeší 
použitím penalizační funkce (při čtení hodnoty značně zhoršující hodnotu účelové 
funkce) nebo návratového kódu (při nesplnění podmínek se hodnota účelové funkce 
nevyčíslí a informace o porušení podmínek se předá optimalizujícímu algoritmu, kde je 
tato situace ošetřena obvykle zmenšením změny odhadu).

Je-li možno model linearizovat, použijí se odhady z lineární regrese. V ostatních 
případech se použijí odhady získané studiem submodelů nebo vyplývající z fyzikálně- 
chemického rozboru problému. Kvalitní optimalizační algoritmy nejsou závislé na
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počátečních odhadech, přesto je však vhodné se přesvědčit, zda výsledkem optimalizace 
s různými počátečními odhady jsou stejné výsledné odhady parametrů. Není-li tomu tak, 
je třeba podrobně analyzovat regresní model a příslušné citlivostní koeficienty. Vhodné je 
rovněž zkusit jiné optimalizační metody.

Mezi nej efektivnější metody z jednorozměrných optimalizačních metod patří 
Fibonacciho metoda, která je metodou komparativní. Předpokladem použití této 
metody je, že v intervalu ve kterém vyšetřujeme extrém, neexistují mimo globálního 
extrému žádné další (lokální) extrémy. Potom se jedná o problém, jak zvolit počet bodů 
tak, aby se pro nejmenší počet vyčíslení účelové funkce zúžil počáteční interval na 
požadovanou délku obsahující hledaný extrém.

Mezi nejjednodušší komparativní vícerozměrné optimalizační metody patří 
metoda s náhodným přírůstkem (varianta metody Monte Carlo). Princip spočívá 
v generování rovnoměrně náhodných čísel v intervalu <0,1 >, která se používají 
k odhadu parametrů podle příslušné rovnice. Další komparativní vícerozměrnou 
optimalizační metodou je metoda simplexová. .

Nejjednodušší derivační metodou je metoda největšího spádu. Po minimalizaci se 
nové odhady vypočítají podle příslušného vzorce. Metoda pracuje lépe ve větší 
vzdálenosti od extrému. Newtonova metoda využívá kvadratickou aproximaci hyperboly 
účelové funkce nad parametry v okolí odhadu, extrém této kvadratické aproximace je 
novým odhadem.Čím větší je shoda mezi skutečnou a aproximující hyperplochou, tím 
rychleji je extrém nalezen, obvykle tomu tak bývá v okolí extrému při použití účelové 
funkce z metody nejmenších čtverců. Levenberg-Marquardtova metoda je kombinací 
obou uvedených derivačních metod. Existují i další, obvykle složitější, ale současně 
i efektivnější metody, se kterými se lze seznámit i ve specializované literatuře.

3. Regresní diagnostika nelineární regrese

Regresní diagnostika výsledků nelineárních modelů je značně komplikovaná, 
proto jsou zde uvedeny jen některé aspekty. Především je to statistická analýza reziduí. 
U lineárních modelů slouží analýza reziduí k ověřování některých předpokladů 
o chybách, u nelineárních modelů pak především k posouzení dosažené těsnosti 
proložení vypočtené regresní křivky danými experimentálními body. Analýzou vlivných 
bodů se identifikují body, které silně ovlivňují odhadované regresní parametry.

3.1 Grafická analýza reziduí
Grafickou (předběžnou) analýzou, která spočívá v prostém zobrazení vektoru 

reziduí, lze snadno odhalit:
a) odlehlé (extrémní) hodnoty v souboru reziduí
b) trend v reziduích
c) nedostatečné střídání znaménka u reziduí
d) chybný model nebo vzájemnou závislost reziduí
e) heteroskedasticitu (nekonstantnost rozptylu) závisle proměnné veličiny y
f) náhlou změnu podmínek při měření hodnot y

3.2 Statistická (numerická) analýza reziduí
V řadě regresních programů aplikované nelineární regrese v laboratoři je analýza
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souboru reziduí hlavní diagnostickou pom tekou při hledání a rozlišení modelu a navíc 
těsnost dosaženého proložení experimentálními body je mírou věrohodnosti nalezených 
odhadů. Mezi nejčastěji užívané statistiky patří především střední hodnota reziduí, která 
by se měla rovnat nule, průměrné reziduum a směrodatná odchylka střední hodnoty 
reziduí a koeficient šikmosti a špičatosti.

K uvedenému užívání analýzy reziduí je však třeba kriticky poznamenat, že 
diagnostické využívání není rigorózní, protože rezidua nemají nulovou střední hodnotu, 
jsou vychýlená a dále jsou přibližně lineární kombinací chyb. Jsou navíc závislá na 
skutečných hodnotách parametrů. K testování reziduí lze užít všech statistik užívaných 
u lineárních regresních modelů. Potíže zde činí pouze určení rozdělení testačních 
statistik, které jsou závislé na nelinearitě modelu.

3.3 Analýza vlivných bodů
U lineárních regresních modelů jsou všechny charakteristiky k odhalení vlivných 

bodů funkcí reziduí a diagonálních prvků projekční matice. Řada charakteristik vlivných 
bodů používá odhadů, určených ze všech bodů kromě i-tého.

U nelineárních regresních modelů je situace komplikována tím, že již nelze 
vyjádřit odhady parametrů a rezidua jako lineární kombinaci experimentálních dat. 
Použije se linearizace nelineárního modelu, je možné použít přímo všech technik 
odhalení vlivných bodů v lineárních modelech.

Vlivné body lze snadno identifikovat na základě Jackknife reziduí. K vyjádření 
vlivu jednotlivých bodů na odhady parametrů lze použít i kvadratického rozvoje 
regresního modelu a vyčíslovat změny vektoru vychýlení při vynechání i-tého bodu nebo 
změny střední hodnoty i-tého rezidua při vynechání i-tého bodu. Mezi nelineární míry 
vlivu i-tého bodu na odhady parametrů patří věrohodnostní vzdálenost LD,

4. Hledání ne j lepšího nelineárního regresního modelu
Kvalita nelineárního modelu se posuzuje podobně jako u lineárního s ohledem na 

následující kritéria:

a) Kvalita nalezených odhadů
Kvalita nalezených odhac i parametrů se posuzuje podle intervalu spolehlivosti 

parametrů, popř. podle testů hypotézy. Jsou-li intervaly spolehlivosti příliš široké, nebo 
některé parametry jsou statisticky nevýznamné, znamená to, že model je blízký 
předurčenému modelu a je tedy příliš složitý (vysoká korelace mezi parametry).

b) Kvalita dosažené těsnosti proložení
Kvalitu dosažené těsnosti proložení lze posoudit prostřednictvím koeficientu 

determinace, residuální směrodatné odchylky a regresní diagnostiky. Stonásobek 
koeficientu determinace se nazývá regresní rabat. K rozlišení těsnosti proložení mezi 
dvěma modely bylo navrženo Akaikovo kritérium, které pro optimální model dosahuje 
minimální hodnoty.

c) Predikční schopnost modelu
Kritéria posouzení predikční schopnosti modelu vycházejí z rozdělení bodů do
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dvou podskupin. Predikční schopnost modelu se pak vyjadřuje kritériem K, příslušný 
vzorec lze nalézt v odborné literatuře (6). Predikční schopnost modelu je tím vyšší, čím 
víc se hodnota K blíží k jedničce.

d) Kvalita experimentálních dat
Kvalita experimentálních dat je určována z regresní diagnostiky. K posouzení 

kvality experimentálních dat se užívá analýzy reziduí a vlivných bodů.

e) Správnost navrženého modelu
Pro správnost navrženého modelu navrhl White test C. Vzorec lze nalézt 

v odborné literatuře (6). Pro správný model je C=0.

f) Souhlas s požadavky fyzikálního smyslu
Důležitou podmínkou je fyzikální smysl nalezených odhadů. Modely, které 

nesplňují tuto podmínku jsou nepřijatelné, i když budou preferovány na základě 
statistických kritérií.

5. Příklady řešení nelineárního regresního modelu

5.1 Nelineární regresní model vycházející z fyzikálních úvah:
Propustnost zemin testována na propustoměru s řízeným stupněm sycení. 

Propustnost materiálů lze charakterizovat koeficientem filtrace k, přičemž platí vztah

k = v/i

kde i - je hydraulický spád [1]
v - filtrační rychlost způsobená spádem i [m/s]

Hydraulický spád je definován vztahem
i = hw/h

kde hw - je výška vodního sloupce [m]
h - výška vzorku [m]

Filtrační rychlost je definována rovnicí
v = Vw/A/t

kde Vw - je objem vody, který v čase t proteče průřezem zkušebního tělesa 
[m3 resp. ml.10"6]

A - průřez zkušebního tělesa [m2]

Na základě výše uvedeného je model pro výpočet koeficientu filtrace následující:

Vw.h
k = ------------------- [m.s1]

t. hw . A
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5.2 Model empirický

5.2.1 Zadání: ,
V uhlí je stanovován obsah popela a obsah beryllia. Mezi obsahem popela v uhlí 

a obsahem beryllia přepočteném na obsah beryllia v popelu uhlí, byl hledán empirický 

model.

5.2.2 Řešení: , . . ,
Tvorba regresního modelu je demonstrována na vyše uvedenem empirickém 

modelu, který řeší vztah mezi obsahem popela v uhlí a obsahem beryllia v popelu uhlí. 
Výstupní závisle proměnná y je obsah beryllia v popelu uhlí a vstupní nezávisle 
proměnná x je obsah popela. Při hledání závislosti mezi x a y bylo navrženo několik 
modelů, které byly testovány softwarem ADSTAT 2.0, modelem nelineární regrese. 
V řešení jsou uvedeny podmínky, vybraný testovaný model, vstupní data a graf 
vybraného regresního modelu. Výsledný model byl vybrán ve smyslu kritérií pro výběr 

vhodného regresního modelu.

VSTUP
Ve vstupních podmínkách (1) je zadána hladina významnosti, informace o tom, 

které parametry chceme zkonstantnit, počet iterací, tolerance pro parametry a tolerance 
pro součet čtverců. Poslední tři podmínky mají význam pro ukončení výpočtu. V tabulce 
(2) je uveden zadaný regresní model a v tabulce (3) vstupní data.

Hladina významnosti, alfa 0.050

Počet bodů, n . 24____________________

Počet parametrů, m 2______________________________

Počet nezávislých proměnných 1 ___

Minimální změna P_SC F°A1 1.000000E-01 __ _

Minimální změna parametrů [%] 0.000000E+00

Maximální počet iterací 150

Kvantil Studentova rozdělení t(l-alfa/2,n-m) 2.074

Kvantil Fisher-Snedecorova rozdělení F(l-alfa,n,n-m) 2.063

Kvantil ChiA2 rozdělení ChiA2(l-alfa,m) 5.991

(2) REGRESNÍ FUNKCE A POČÁTEČNÍ ODHADY PARAMETRŮ:

Regresní funkce:p[ l]+p[ 2]*(l/xl)

p[ 1] :p 1.000000E+00 p[ 2] :p LOOOOOOE+OO
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Celá matice editoru.

(3) VSTUPNÍ DATA:

Poř.č. i 2 3 4 5

X 4.5800E+00 3.35OOE+OO 2.5000E+00 3.2400E+00 5.1300E+00

y 9.1700E+00 1.2540E+01 1.6400E+01 1.2350E+01 7.9900E+00

Pořad.č. 6 7 8 9 10

X 8.1800E+00 8.9780E+01 4.5230E+01 5.5700E+00 2.9600E+01

y 5.0100E+00 4.6000E-01 9.3000E-01 7.5400E+00 1.3900E+00

Pořad.č. 11 12 13 14 15

X 1.7400E+01 1.4540E+01 3.7800E+00 6.6700E+00 8.7300E+00

y 2.3000E+00 2.0300E+00 1.O58OE+O1 6.3000E+00 4.7000E+00

Pořad.č. 16 17 18 19 20

X 5.7780E+01 2.1900E+00 1.8300E+00 2.3000E+00 2.1390E+01

y 6.9000E-01 1.8260E+01 2.5140E+01 1.7390E+01 1.9200E+00

Pořad.č. 21 22 23 24

X 5.3000E+00 1.5800E+00 8.9140E+01 7.6220E+01

y 8.4900E+00 2.8480E+01 4.7000E-01 5.4000E-01

VÝSTUP:
Ve výstupní tabulce (1) a (2) jsou uvedeny bodové a intervalové odhady 

parametrů s pološířkami asymptotických intervalů spolehlivosti, vychýlení odhadu 
a relativní vychýlení odhadu. Pokud je relativní vychýlení menší než 3%, lze tyto 
intervaly akceptovat.

(1) BODOVÉ ODHADYPARAMETRŮ:

Parametr Bodový 

odhad

Směrodatná 

odchylka

Absolutní

Vychýlení

Relativní 

vychýlení[%]

Pil] -2.997429E-01 2.092577E-01 2.73 3299E-11 -9.118814E-09

p[2| 4.345761E+01 7.799269E-01 1.996661E-10 4.594503E-10

(2) INTERVALOVÉ ODHADY PARAMETRŮ:

Parametr Bodový odhad Poloviční délka konfidenčního int. spočtená z

délky poloos maxim

p[l] -2.997429E-01 +- 4.214351E-01 +-5.491454E-01

p[2] 4.345761E+01 +- 2.045441E+00 +- 2.046727E+00
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V tabulce (3) je uvedena korelační matice s prvky, které odpovídají párovým 
korelačním koeficientům mezi odhady parametrů.

(3) KORELAČNÍ MATICE ODHADŮ:

x[l,i] x[2,i]

x[l,i] 1.0000E+00 -7.4423E-01

x[2,i] . -7.4423E-01 1.0000E+00

V tabulce (4) jsou uvedeny statistické charakteristiky regrese, zahrnující 
reziduálni součet čtverců, regresní rabat (tj. stonásobek čtverce vícenásobného 
korelačního koeficientu) a Akaikeho informační kritérium. Jak již bylo uvedeno 
v kapitole 4, slouží Akaikovo kritétium k rozlišení těsnosti proložení mezi dvěma 
modely. Pro optimální model dosahuje AIC minimální hodnoty.

(4) STATISTICKÉ CHARAKTERISTIKY REGRESE:

Reziduálni součet čtverců, RSC 1.031442E+01

Regresní rabat, DA2 [%] 9.929639E+01

Akaikeho informační kriterium, AIC -1.626826E+01

Dále je statistickým software provedena analýza reziduí podobně jako 
u předchozího příkladu lineární regrese, směrodatné odchylky měření, první čtyři 
momenty reziduí, reziduálni součet čtverců a statistiky reziduí. Výsledky analýzy nejsou 
v předloženém článku uvedeny. V rámci statistického testováni je provedeno hledání 
vlivných bodů, podobně jako u lineární regrese. Vlivné body nebyly zjištěny, proto je 
výsledný číselný soubor v článku vypuštěn.

5.2.3 Grafický výstup
Grafický výstup software Adstat 2.0 předkládá 2 grafy. Na obr. 1 je zobrazena 

závislost reziduí na proměnné ywp. Na obr. 2 je nakreslen průběh regresního modelu 
spolu s konfidenčními pásy a zadanými daty. Mírně rozšířený konfidenční pás pro 
hodnoty x 30-80% popela je způsoben menším počtem experimentálních bodů.

5.2.4 ZÁVĚR
Jako ukázka nelineární regrese byly uvedeny dva příklady. První příklad vychází 

z fyzikálních úvah pro hodnocení propustnosti zemin. Výsledkem je vzorec pro výpočet 
koeficientu filtrace.

Druhý příklad je empirický. Cílem bylo nalézt matematický vztah mezi obsahem 
popela a obsahem beryllia přepočteném na obsah beryllia v popelu uhlí. Vyčíslený 
regresní vztah má tvar:

y = -0.2997 + 4.3458/x,
kde x je obsah popela v uhlí 

y obsah beryllia v popelu uhlí
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Obr. 1 Graf predikce rezidua
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IV. ANALÝZA ROZPTYLU

1. Základní pojmy analýzy rozptylu
Analýza rozptylu, označovaná také jako ANOVA, se v technické praxi používá 

buď jako samostatná technika nebo jako postup umožňující analýzu zdrojů variability 
u lineárních statistických modelů. Ze statistického hlediska lze analýzu rozptylu chápat 
jako speciální případ regresní analýzy, kde vysvětlující proměnné mají pouze binární 
charakter a mohou nabývat hodnot jen 0 nebo 1.

V předloženém článku je ANOVA použita jako samostatná technika, která 
umožňuje posouzení významnosti jednotlivých zdrojů variability v datech. V technické 
praxi se ANOVA uplatňuje v úlohách:

a) Určení významnosti způsobu přípravy vzorku na výsledek analýzy resp. 
experimentu.

b) Určení vlivu typu přístroje, lidského faktoru a obsluhy na výsledek měření.
c) Zpracování různých mezilaboratorních experimentů a určení významnosti 

rozdílů mezi laboratořemi na výsledek analýz.
d) Zpracování plánovaných experimentů, u kterých se systematicky sleduje vliv 

rozličných faktorů (teploty, času, koncentrace a dalších) na výsledek reakce či 
analýzy.

Podstatou analýzy rozptyluje rozklad celkového rozptylu dat na složky objasněné 
(známé zdroje variability) a složku neobjasněnou, o níž se předpokládá, že je náhodná.

Terminologie ANOVY je poněkud speciální. Jsou rozlišovány kvalitativní 
a kvantitativní faktory. Za kvalitativní faktor lze například považovat způsob přípravy 
vzorku. Kvantitativní faktor je například velikost upraveného vzorku nebo další fyzikální 
a chemické veličiny. Jednotlivé faktory se vyskytují na určitých úrovních, které se 
označují jako zpracování. Tyto úrovně mohou být opět kvantitativní nebo kvalitativní. 
Zdrojem variability výsledků měření jsou jednotlivé úrovně faktoru.

Účelem analýzy rozptylu je testování shody jednotlivých úrovní, neboli nulové 
hypotézy. Pokud jsou zjišťovány pouze rozdíly mezi danými úrovněmi, např. mezi 
způsoby přípravy vzorku, jde o modely spevnými efekty. Pokud jsou jednotlivé úrovně 
pouze výběrem z konečného či nekonečného souboru, jde o modely s náhodnými 
efekty. O model s pevnými efekty půjde, např. bude-li vyšetřován vliv přípravy vzorku na 
výsledek analýzy. O model s náhodnými efekty jde tehdy, je-li např. zjišťován vliv 
průměrné velikosti částic vzorku na výsledek analýzy.

Pro volbu typu faktorů je možné použít následujících orientačních pravidel:
a) typické faktory, které odpovídají pevným faktorům, jsou obvykle způsob 

zpracování, typ měřícího přístroje, analytická metoda, druh chemikálie, typ 
suroviny apod.

b) typické faktory, které odpovídají náhodným faktorům, jsou laboratoře, 
pracovníci, dny apod.

Je-li sledován pouze jeden faktor, pak jde o jednofaktorovou analýzu rozptylu 
neboli třídění podle jednoho faktoru. Často se však sleduje i vliv několika faktorů, pak 
jde o vícefaktorovou analýzu rozptylu.
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Pro vlastní zpracování modelů analýzy rozptylu je důležité, zda je při všech 
kombinacích faktorů realizován stejný počet měření, resp. opakování, či nikoliv. 
Kombinace úrovní jednotlivých faktorů se označuje jako cela. Pro stejný počet 
opakování se experimenty označují jako vyvážené a pro nestejný počet opakování jako 
nevyvážené. Z hlediska jednoduchosti zpracování a interpretace je výhodnější pracovat 
s vyváženými experimenty.

2. Jednofaktorová analýza rozptylu
V nejjednodušším případě se předpokládá, že na náhodnou veličinu má vliv 

pouze jeden faktor. Cílem jednoduchého třídění je především testování, zda jsou efekty 
a; nulové, tedy zda jednotlivé úrovně daného faktoru vedou ke statisticky nevýznamným 
rozdílům ve výsledcích, což znamená, že je zkoumán vliv faktoru na výsledek 
experimentu. Nulová hypotéza Ho: ai = 0, i=l,..., K, se ověřuje proti alternativní 
hypotéze HA: ai# 0, i = 1,..., K. Pro posouzení významnosti efektu se využívá testovací 
charakteristika Fe, která je porovnávána s kvantilem Fi-a. Vyjde-li Fe větší než kvantil, je 
nutné na hladině významnosti ot nulovou hypotézu Ho vyloučit a efekty považovat za 
nenulové, neboli významné.

Vlastní analýza rozptylu závisí na tom, zda jde o modely spevnými nebo 
náhodnými efekty. U modelů s náhodnými efekty se může projevit porušení předpokladu 
normality u náhodných veličin. Indikaci normality lze provádět s využitím rankitových 
grafu pro rezidua. Podobně jako u modelů s pevnými efekty lze i u modelů s náhodnými 
efekty zlepšovat normalitu vhodnou transformací dat. Problémem je však hodnocení 
rozptylů v transformovaném měřítku. Pokud není splněn předpoklad normality, je možné 
použít k určení odhadu rozptylu a testování jeho významnosti techniku Jackknife.

3. Dvoufaktorová analýza rozptylu
Při dvoufaktorové analýze rozptylu se provádí experimenty na různých úrovních 

dvou faktorů, A a B. Kombinace úrovní faktorů tvoří typickou mřížkovou strukturu, 
jejímž elementem je tzv. cela. V každé cele je obecně ny opakování. Často se lze setkat 

s případem bez opakování, kdy je v každé cele pouze jeďme opakovaní. Kromě 
řádkových a sloupcových efektů se zde vyskytuje také interakční člen, který je 
důsledkem různých kombinací sloupcových a řádkových efektů.

Je-li v cele jedno pozorování, je výhodné použití Tukeyova modelu interakce. 
Složitější jsou řádkové lineární modely interakcí nebo sloupcově lineární. Kompletnější 
je aditivně-multiplikativní model. Tukeyho model interakce využívá statistik Fab, Fa 

a Fb. Testuje se nulová hypotéza proti alternativní.

V chemické praxi je nejužívanější model spevnými efekty. Umožňuje určit vliv 
dvou faktorů na výsledek chemické analýzy. Podle počtu opakování v jednotlivých 
celách lze úlohy dvojného třídění rozlišit. Je-li v každé cele jedna hodnota, jde o modely 
pro případ bez opakování měření. Při testování je provedena úplná analýza rozptylu 
s interakcí Tukeyova typu. Pro odhad parametrů je možné použít buď vztahů 
vycházejících z předpokladů normality nebo robustní techniky mediánového vyhlazení. 
Kromě testů významnosti se určuje vhodnost mocninné transformace pro eliminaci 
neaditivity a ověřuje se předpoklad normality. Indikace aditivity se provádí pomocí grafu.
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Tvoří-li body náhodný obrazec, pak se jedná o aditivitu, je-li obrazec přibližně lineární, 
pak se jedná o eliminovatelnou neaditivitu. Vhodná mocninná transformace pro eliminaci 
neaditivity se určí ze směrnice regresní přímky.

Je-li ve všech celách stejný počet opakování, jedná se o vyvážený model. Při 
testování nulové hypotézy proti alternativní se opět využívá statistik Fab, Fa a FB. 
Je hledán optimální model analýzy rozptylu, odhadovány jeho parametry a provedeny 
testy významnosti. Je ověřována vhodnost transformace dat a normality reziduí. 
Výhodou vyvážených experimentů je, že jednotlivé složky modelů analýzy rozptylu jsou 
vzájemné nezávislé.

Pro nevyvážené modely obecně platí, že v každé cele je jiný počet opakování. 
Pro nevyvážené experimenty je rovněž hledán optimální model analýzy rozptylu, 
odhadnuty jeho parametry a provedeny testy významnosti. Je ověřována vhodnost 
logaritmické transformace a normalita reziduí.

4. Příklady ANO VY

4.1 Jednofaktorová analýza: Vliv teploty na délkovou změnu pálením 
cihlářských surovin

Zadání: Při teplotě 950, 1000 a 1050°C byla sledována délková změna pálením 
zkušebních tělísek vytvořených z těsta cihlářské suroviny. Na hladině významnosti 
a = 0.05 je ověřováno, zda má teplota výpalu vliv na délkovou změnu tělísek.

Řešení: Data byla zpracována jednofaktorovou analýzou rozptylu s pevnými efekty.

VSTUP
(1) DATA A PODMÍNKY:________________________________________________

Hladina významnosti alfa 0.050

Transformace Ne

Počet úrovní faktoru A, k 3

Cel. Vel. n = n[l] + n[2] + ... + n[k] 27

Ve vstupních podmínkách (1) je zadána hladina významnosti, která se používá při 
všech testech. Dále se zadává zda budou data logaritmicky transformována či nikoliv. 
Potřeba logaritmické transformace vychází na základě grafu závislosti směrodatné 
odchylky na průměru. Počet úrovní znamená v předloženém příkladě tři různé teploty. 
Celkový počet naměřených hodnot je 27. V následující tabulce (2) je uvedena celá 
matice, kde jsou data seřazena podle jednotlivých úrovní. V prvním řádku je uveden 
maximální počet opakování, tj. 9 pro každou úroveň, a počet úrovní = počet sloupců.
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(2) OPAKOVANÁ POZOROVÁNÍ NA RŮZNÝCH ÚROVNÍCH FAKTORU A:

Celá matice editoru. ______________________________________________________

Opakování

Úrovně efektu A 
Velikost

n[ 1] = 9 n[2] = 9_______ n[3] = 9

1 1.3000E+00 6.1000E+00 9.8000E+00

2 3.1000E+00 7.8000E+00 1.0300E+01

3 1.6000E+00 7.3000E+00 9.9000E+00

4 6.4000E+00 8.4000E+00 1.1200E+01

5 4.2000E+00 5.5000E+00 1.1200E+01

6 3.6000E+00 7.9000E+00 1.0700E+01

7 6.1000E+00 7.5000E+00 1.0800E+01

8 6.5000E+00 8.0000E+00 1.0200E+01

9 5.0000E+00 8.7000E+00 1.0900E+01

VÝSTUP

(1) PRŮMĚRY A EFEKTY ÚROVNÍ:

Celkový průměr = 7.4074E+00

Reziduálni rozptyl = 1.7534E+00

Úroveň Průměr Efekt Híí

1 4.2000E+00 -3.2074E+00 1.1111E-01

2 7.4667E+00 5.9259E-02 1.1111E-01

3 1.O556E+O1 3.1481E+00 1.1111E-01

V odstavci (1) výstupu software Adstat 2.0 jsou uvedeny odhady parametrů 
jednotlivých úrovní. V dalším odstavci (2) jsou uvedeny výsledky analýzy vlivných bodů 
z Jakknife reziduí a extrémů z prvků projekční matice Hh.

(2) DETEKCE VLIVNÝCH BODŮ (vybočující a odlehlé body)

Odlehlé Vybočující

Závěr Žádné Žádné
Z tabulky analýzy rozptylu (3) je zřejmé, že nulová hypotéza byla zamítnuta, 

efekty lze považovat za nenulové, neboli významné. Teplota výpalu má tedy vliv na 
délkovou změnu vypalovaných zkušebních tělísek. Stejné závěry lze učinit na základě 
Scheffeho procedury, viz tab (4).
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(3) TABULKA ANOVA:

Ho: Efekty faktoru A jsou nulové, Ha: ... nejsou nulové

Kvantil F( l-alfa,k-l,n-k) = 3.403__________________________________________________________

Zdroj 

rozptylu

Stupně 

volnosti

Součet 

čtverců

Průměrný 

čtverec

Testovací

kriterium

Závěr 

Hoje

Spočtená 

hlad.výz.

mezi 
úrovněmi

k-1 =2 1.8182E+02 9.0908E+01 51.846 Zamítnuta 0.000

rezidua n-k = 24 4.2082E+01 1.7534E+00 - -

celkový n-1 =26 2.2390E+02 8.6115E+00 - - -

(4) VÍCENÁSC>BNÁ POROVNÁN] " (Sheffeho procedura):

Hypotéza 

Ho

Průměrný párový 

rozdíl

Meze konfidenčního intervalu Závěr

dolní horní

P 1 =P2 -3.267 -4.895 -1.638 Zamítnuta

P 1 = P3 -6.356 -7.984 -4.727 Zamítnuta

P2 = P3 -3.089 -4.717 -1.460 Zamítnuta

(5) ZKOUŠKA TRANSFORMACE:

Korelační koefícientent R :-0.998

(Pokud je R blízké nule není transformace nutná.)
Protože se R blíží jedné, byla provedena logaritmická transformace. Výsledek je uveden 
v tabulce (6). Testovací kritérium nabývá hodnoty 20.624 a je tedy vyšší než kvantil 
Fi.a(K-l,N-l), který nabývá hodnoty 3.403. Závěry jsou shodné jako pro zpracování dat 
bez transformace.

(6) TABULKA ANOVA PO TRANSFORMACI:

Ho: Efekty faktoru A jsou nulové, HA: ... nejsou nulové

Kvantil F( l-alfa,k-l,n-k) = 3.403

Zdroj 

rozptylu

Stupně 

volnosti

Součet 

čtverců

Průměrný 

čtverec

Testovací

kriterium

Závěr 

Ho je

Spočtená 

hlad.výz.

mezi 
úrovněmi

k-1 = 2 5.1635E+OO 2.5818E+00 20.624 Zamítnuta 0.000

rezidua a-k = 24 3.0044E+00 1.2518E-01 -

celkový a-1 =26 8.1679E+00 3.1415E-01 - - -
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Závěr: Testovací kritérium Fe = 51.846 je vyšší než kvantil Fba(K-l,N-l) = 3.403, 
nulovou hypotézu Ho lze zamítnout, teplota výpalu má tedy vliv na délkovou změnu 
vypalovaných zkušebních tělísek.

Při testovaní nebyly zjištěny vybočující a odlehlé body. Přiložený Q-Q graf na 
obr.l je konstruován na základě Jackknife reziduí pro ověření jejich normality. Přibližně 
lineární závislost se považuje za potvrzení normality. Ve výstupu v Adstatu v bodě (5) je 
provedena zkouška transformace. Je-li R blízké nule, pak není transformace nutná. 
Protože se R blíží jedné, byla provedena logaritmická transformace, bod (6). Protože 
testovací kritérium Fe je vyšší než kvantil Fi.a(K-l,N-l), jsou tedy závěry shodné se 
závěry uvedenými v předchozím odstavci.

4.2 Dvoufaktorová analýza - ANOVA pro dvojné třídění s pevnými efekty se 
stejným počtem pozorování: Vliv laboratoře a metody na stanovení obsahu 
síry v uhlí

Zadání: Byl vyšetřován obsah veškeré síry v uhlí dvěma nezávislými metodami v 5ti 
laboratořích. Každé měření bylo dvakrát opakováno. Na hladině významnosti a = 0.05 je 
vyšetřováno, zda obsah síry v uhlí je ovlivněn analytickou metodou (faktor A) nebo 
laboratoří (faktor B), kde byla analýza provedena.

Řešení:

VSTUP
(1) DATA A PODMÍNKY: ______________ ____________________________________

Hladina významnosti alfa 0 050

Transformace Ne

Počet úrovní parametru A, n 2

Počet úrovní parametrů B, m 7

Počet opakování v jedné buňce, o 2

Ve vstupních podmínkách (1) je zadána hladina významnosti stejně jako 
v předchozím příkladě. Dále se zadává zda budou data logaritmicky transformována či 
nikoliv. Potřeba logaritmické transformace vychází na základě grafu závislosti 
směrodatné odchylky na průměru. Počet úrovní znamená v předloženém příkladě tři 
různé teploty. Celkový počet naměřených hodnot je 27. V následující tabulce (2) je 
uvedena celá matice, kde jsou data seřazena podle jednotlivých úrovní.
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OBR. 1

73



Zpravodaj Hnědé uhlí 11/98

(2) MĚŘENÍ NA RŮZNÝCH ÚROVNÍCH FAKTORŮ A ,B:

Celá matice editoru, (pro každou úroveň faktorů A a B je měření 2 krát opakováno)

Úrovně

Faktoru A

Úrovně faktoru B

1 2 3 4 5 6 7

1 1.0700E-01 1.2700E-01 1.1500E-01 1.0800E-01 9.7000E-02 1.1400E-01 1.5500E-01

1.0500E-01 1.2200E-01 1.1200E-01 1.0800E-01 9.6000E-02 L1900E-01 1.4500E-01

2 1.0500E-01 1.2700E-01 1.0900E-01 L1700E-01 LlOOOE-Ol 1.1600E-01 1.6400E-01

1.0300E-01 L2400E-01 1.1100E-01 1.1500E-01 9.7000E-02 1.2200E-01 1.6000E-01

VÝSTUP

(1) PRŮMĚRY A ÚROVNĚ EFEKTŮ:

Celkový průměr = 1.1821E-01

Reziduálni rozptyl = 1.4500E-05

FAKTORA: FAKTOR B:

Úroveň Průměr Efekt Úroveň Průměr Efekt

1 1.1643E-01 -1.7857E-03 1 1.0500E-01 -1.3214E-02

2 1.2000E-01 L7857E-03 2 1.2500E-01 6.7857E-03

3 1.1175E-01 -6.4643E-03

4 1.1200E-01 -6.2143E-03

5 1.0000E-01 -1.8214E-02

a 1 1775E-0I -4 6429E-04

7 1.5600E-01 3.7786E-02

Ve výsledkovém souboru v tabulce (1) jsou obsaženy odhady řádkových efektů 
(alfa) a sloupcových efektů (beta), celkový průměr a reziduálni rozptyl. V tabulce (2) je 
uvedena analýza rozptylu. Z výsledků je zřejmé, že testovací kritérium pro faktor A má 
hodnotu 6.158 a tedy je větší než kvantil F, který nabývá hodnoty 4.600. Nulová 
hypotéza je tedy zamítnuta. Lze tedy konstatovat, že faktor A je statisticky významný 
a analytická metoda má vliv na stanovení obsahu síry v uhlí. Testovací kritérium pro 
faktor B nabývá hodnoty 94.750 a rovněž větší než kvantil F, který má hodnotu 2.848. 
Faktor B je tedy rovněž statisticky významný a laboratoř má vliv na stanovení obsahu 
síry. Interakce obou vyšetřovaných faktorů A a B je naopak statisticky nevýznamná, 
protože testovací kritérium je menší než kvantil.

74



Zpravodaj Hnědé uhlí 11/98

(2) TABULKA ANOVA PRO MODEL S INTERAKCEMI FAKTORŮ A, B:

Hq: Efekty faktoru A jsou nulové, HA: ... nejsou nulové

Kvantil F(l-alfa,n-l,mn(o-l) = 4.600

Ho: Efekty faktoru B jsou nulové, HA: ... nejsou nulové

Kvantil F(l-alfa,m-l,mn(o-l) = 2.848

Ho: Interakce I je nulová, HA: ... není nulová

Kvantil F(l-alfa,(n-l)(m-l),nm(o-l)) = 2.848

(Zde I znamená efekty interakcí A a B dohromady)

Zdroj 

rozptylu

Stupně 

volnosti

Součet 

čtverců

Průměrný 

čtverec

Testovací

kriterium

Závěr

Ho je

Spočtená 

hlad.výz.

mezi 

úrovněmi A

n-1 = 1 8.9286E-05 8.9286E-05 - 6.158 Zamítnuta 0.026

mezi 

úrovněmi B

m-1 = 6 8.2432E-03 L3739E-03 94.750 Zamítnuta 0.000

interakce (n-l)(m-l)=6 1.9121E-04 3.1869E-05 2.198 Akceptována 0.105

rezidua mn(o-l) = 49 2.0300E-04 1.4500E-05

celkový mno-1 = 27 8.7267E-03 3.2321E-04

Z tabulky (3) je zřejmé, že korelační koeficient se blíží nule a logaritmickou 
transformaci není nutné provádět.

(3) ZKOUŠKA TRANSFORMACE:

Korelační koeficient, R : 0.287

(Pokud je R blízké nule není transformace nutná.)

Závěr: Testovací kritéria pro faktor A i B jsou vyšší než jejich kvantily, což znamená, že 
nulovou hypotézu lze zamítnout a oba faktory jsou statisticky významné. Tyto závěry 
v praxi znamenají, že jak zvolená analytická metoda, tak i testující laboratoř mají vliv na 
stanovení obsahu síry v uhlí.

Přiložený Q-Q graf na obr. 2 je konstruován na základě Jackknife reziduí pro 
ověření jejich normality. Přibližně lineární závislost lze považovat za potvrzení tohoto 
předpokladu. Graf transformace na obr. 3 nevykazuje lineární závislost a potvrzuje, že 
není nutné provádět logaritmickou transformaci.
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OBR. 2
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Graf transformace

ošal

OBR. 3
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V. VÍCEROZMĚRNÁ STATISTICKÁ ANALÝZA

Vícerozměrnou statistickou analýzou jsou řešeny problémy, kdy u souboru 
objektů je sledováno více než jedna proměnná. V předložené práci byla data zpracována 
programovým systémem Statgraphics modulem Vícerozměrné metody. Z tohoto modulu 
byla použita analýza hlavních komponent, shluková analýza a grafické metody 
k vizuálnímu posouzení podobnosti vícerozměrných objektů.

1. Analýza hlavních komponent
Ve vícerozměrné statistice jsou výchozí datovou formou tzv. zdrojové matice, 

u nichž představují řádky objekty (měřené vzorky) a sloupce měřenou vlastnost 
(výsledek laboratorní zkoušky). Při velkém počtu měřených vlastností i objektů je 
poměrně obtížná interpretace. Pro zjednodušení analýzy a usnadnění interpretace je 
analýzou hlavních komponent zkoumána možnost nahrazení velkého počtu měřených 
vlastností menším počtem, aniž by došlo k podstatné ztrátě informace. Analýza hlavních 
komponent je metoda, která se pokouší nalézt skryté (latentní) proměnné, označované 
jako hlavní komponenty, jež maximálně reprezentují původní proměnné.

Protože platí, že součet rozptylů všech hlavních komponent je roven součtu 
rozptylů vstupujících proměnných, lze z podílů rozptylů jednotlivých hlavních 
komponent usuzovat na část celkové variability vstupujících proměnných vysvětlenou 
příslušnou hlavní komponentou. Jestliže součet prvních (nejvyšších) x těchto podílů je 
dostatečně blízký jedné, většinou se požaduje kolem 0,85-0,9, stačí vzít v úvahu těchto 
prvních x hlavních komponent pro vysvětlení chování původních proměnných.

Programový systém Statgraphics metody hlavních komponent předkládá 
v základním výstupu tabulku, kde jsou uvedena procenta variability vysvětlená 
jednotlivými hlavními komponentami. V grafických výstupech je graf komponentních 
vah, který zobrazuje komponentní váhy pro první dvě hlavní komponenty. Další graf, 
bodový diagram, zobrazuje komponentní skóre, tj. hodnoty prvních dvou hlavních 
komponent u jednotlivých objektů, navzájem. Dvojný graf je kombinací obou 

v 1 1 **1 ___Z*0 XT ^ - — — 1 Z. —L.  ^~a£<~ » -a a aI* zsw vfl4-rí**r*i i O 4- n^f-w-d ■*•* L* i r*n 1 "v a ♦'* n 1 «^^v4"
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charakteristická čísla použité výběrové kovarianční nebo korelační matice, tedy rozptyly 
jednotlivých komponent. Jedním z dalších výstupů je matice komponentních vah 
(koeficientů lineární kombinace). Počet řádků i sloupců je roven počtu proměnných. 
Jednotlivé sloupce této matice představují charakteristické vektory, které odpovídají 
příslušným charakteristickým číslům (rozptylům komponent). Posledním z číselných 
výstupů jsou hodnoty hlavních komponent jednotlivých objektů. U výsledné matice je 
počet řádků roven počtu objektů a počet sloupců počtu proměnných.

2. Shluková analýza
Shluková analýza je metoda, která se zabývá zkoumáním podobnosti 

vícerozměrných objektů a jejich roztříděním do shluků. Cílem je v podstatě dosáhnout 
stavu, kdy objekty uvnitř shluku jsou si co nejvíce podobné a s objekty z různých shluků 
co nejméně. Podle způsobu shlukování se metody shlukové analýzy dělí na hierarchické 
a nehierarchické.

Hierarchické postupy jsou založeny na postupném spojování objektů a jejich
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shluků do dalších (větších) shluků. Hierarchické metody se dále dělí na aglomerativní 
a divizní. Při aglomerativních postupech shlukování se vychází od jednotlivých objektů, 
které se postupně seskupují do tříd ke konečnému stavu, tj. spojení všech objektů do 
jedné třídy. Divizní postup je obrácený. Při tomto postupu se vychází z množiny všech 
objektů jako jediné třídy a jejím postupným dělením se získá systém tříd, až se skončí ve 
stádiu jednotlivých objektů. Výsledky hierarchických shlukovacích postupů lze zachytit 
graficky v podobě stromu - dendogramu.

Mezi aglomerativní hierarchické metody shlukové analýzy patří metoda průměrné 
vazby, kdy se vzdálenost dvou shluků počítá jako průměr z možných mezishlukových 
vzdáleností objektů. U metody nejbližšího souseda je kritériem pro spojování shluků 
minimum z možných mezishlukových vzdáleností objektů. Na opačném principu je 
založena metoda nejvzdálenějšího souseda, která počítá vzdálenost dvou shluků jako 
maximum z možných mezishlukových vzdáleností objektů. Další metodou je centroidní 
metoda, při níž se vzdálenost shluků počítá jako euklidovská vzdálenost jejich centroidů. 
mediánová metoda je v podstatě vylepšení centroidní metody, neboť se snaží odstranit 
rozdílné váhy, které centroidní metoda dává různě velkým shlukům. Mezi divizní metody 
patří rozklad nej kratší neuzavřené cesty a MacNaughtonova-Smithova metoda.

V nehierarchických shlukovacích postupech je počet tříd zadán předem, i když se 
v průběhu výpočtu může změnit. Zůstane-li počet tříd zachován, jde o nehierarchické 
metody s konstantním počtem shluků, v opačném případě to jsou nehierarchické metody 
s optimalizovaným počtem shluků. Nehierarchické metody lze rozdělit na dvě základní 
varianty, optimalizační metodu a analýzu modů. Analýza modů patří mezi metody, při 
kterých jsou hledány rozklady do tříd. Třídy jsou místa se zvýšenou koncentrací objektů. 
Optimalizační nehierarchické hledají optimální rozklad přiřazováním objektů z třídy do 
třídy s cílem minimalizovat nebo maximalizovat nějakou charakteristiku kvality rozkladů.

Při zpracování dat v této práci byla použita nehierarchická metoda typických 
bodů (Seeded) systému Statgraphics. Při použití této metody jsou na základě věcných 
znalostí zadány objekty, které jsou typickými představiteli nově vytvořených shluků, 
a systém rozdělí objekty do shluků podle jejich euklidovské vzdálenosti od těchto 
typických objektů.

3. Grafické metody
Grafické metody slouží pro vizuální posouzení podobnosti vícerozměrných 

objektů. Jednotlivé proměnné jsou znázorněny s ohledem na jejich konkrétní hodnoty do 
určitých geometrických tvarů nebo symbolů. Vlastnosti dat se posuzují s ohledem na 
vizuální rozdíly mezi symboly. Mezi základní typy symbolů patří profily, polygony, tváře, 
křivky a stromy. Profily představují dvourozměrné zobrazení m-rozměrných dat. Každý 
bod je charakterizován vertikálními úsečkami nebo sloupci. Profil pak vzniká spojením 
koncových bodů těchto úseček nebo sloupců. Tváře charakterizují každou složku Xy 
vektoru Xi nějakým znakem, který je součástí schematizované tváře. Křivky využívají 
transformace každého bodu Xi na spojitou křivku, která je lineární kombinací všech jeho 
složek. Stromy jsou vhodné pro případy, kdy je počet složek vektoru x veliký. Jednotlivé 
složky xj představují délku větví schematického stromu. Polygony jsou vlastně profily 
v polárních souřadnicích. Každá složka Xy vektoru x, odpovídá délce paprsku 
vycházejícího z jednoho středu. Paprsky jsou rozmístěny ve stejných vzdálenostech na 
kružnici.
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V systému Statgraphics je k dispozici graf slunečních paprsků (Sun Ray Plot) 
a hvězdicový symbolický graf (Star Symbol Plot). Při využití metody Sun Ray Plot je 
systémem nakreslena pro každý objekt hvězdice, tzv. polygon, který je tvořen z paprsků 
spojených ve společném bodě a úseček mezi paprsky. Střed každého paprsku představuje 
průměr příslušné proměnné a jeho délka odpovídá 2n násobku směrodatné odchylky této 
proměnné. Polygon grafické metody Star Symbol Plot je tvořen z paprsků, které se pro 
každý objekt spojují v centrálním bodě. Stejně směřující paprsky u různých objektů 
datového souboru se liší svoji délkou. Nejdelší paprsek reprezentuje nejvyšší hodnotu 
příslušné proměnné a naopak nej kratší paprsek informuje, že u daného objektu nabývá 
příslušná proměnná nej menší hodnoty z celého souboru.

4. Příklad vícerozměrné statistické analýzy
Zadání: V rámci technologického průzkumu v severočeské pánvi byl proveden odběr 
vzorků terciérních jílovců ze čtyř průzkumných vrtů VI, V2, V3 a V4 za účelem zjištění 
jejich použitelnosti v keramické výrobě. Odebrané vzorky byly dopraveny do laboratoře 
a na nich provedeny zkoušky: silikátová analýza včetně ztráty žíháním, zrnitostní 
zkouška, stanovení optimální vlhkosti keramického těsta, délkové změny sušením 
a pevnost v ohybu po vysušení. Zkoušky byly provedeny dle příslušných normovaných 
metodik.

Datový soubor:
Na základě provedených laboratorních zkoušek je v tab.l zpracován přehled 

výsledků pro jednotlivé vzorky všech čtyř vrtů. Protože alkalické kovy, tj. Na a K, jsou 
v jílovcích severočeské pánve obsaženy v živcích a prvky alkalických zemin, tj. Ca a Mg, 
v karbonátech, případně v jílových minerálech v poměrně malém množství, byly při 
vyhodnocení oxidy alkalických kovů Na2O a K2O a oxidy prvků alkalických zemin CaO 
a MgO použity v podobě jejich součtu.

Řešení:
j., zViifliy^Š žiiži V ii ivii ií.UÍ«ii>vliČÍiě.

Metodou hlavních komponent byl zpracován výše uvedený soubor dat. 
V následující tab. 2 jsou uvedeny výsledky analýzy hlavních komponent. V prvním 
sloupci jsou uvedena pořadová čísla jednotlivých komponent. Ve druhém sloupci jsou 
uvedena procenta variability vysvětlená jednotlivými hlavními komponentami, tj. podíly 
rozptylů jednotlivých hlavních komponent na celkové variabilitě, v pořadí od nej vyššího 
k nejnižšímu. Ve třetím sloupci jsou tytéž podíly uvedeny kumulované a lze z nich určit 
optimální počet komponent. Obyčejně se požaduje, aby součet prvních nejvyšších 
komponent měl 85 - 92 %. Z tab. 2 vyplývá, že tento předpoklad splňuje 5 - 6 hlavních 
komponent. Na obr. 1-3 jsou znázorněny grafy hlavních komponent.
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Tab. 2: Analýza hlavních komponent

Principal Components Analysis

Component Percent of Cumulative

Number Variance Percentage

1 47.46525 47.46525

2 16.39470 63.85995

3 11.95133 75.81128

4 8.09601 83.90729

5 4.86966 88.77695

6 4.29131 93.06826

7 3.20702 96.27527

8 1.73000 98.00527

9 1.27612 99.28139

10 0.68424 99.96563

11 0.03437 100.00000

V tab. 3 jsou uvedeny komponentní váhy pro první dvě hlavní komponenty a na 
obr. 1 je znázorněn graf komponentních vah pro první dvě hlavní komponenty 
u jednotlivých proměnných vstupujících do analýzy.

Tab. 3: Komponentní váhy (koeficienty lineární kombinace) pro první dvě hlavní 
komponenty________________________ _______________ ________________________

Číslo 

objektu

komponentní váhy Číslo 

objektu

Komponentní váhy

pro 1. hlavní 
komponentu

pro 2. hlavní 
komponentu

pro 1. hlavní 
komponentu

pro 2. hlavní 
komponentu

1 0.36939 -0.165576 7 0.285145 -0.199643

2 0.339967 -0.277312 8 0.277501 0.193265

3 0.305127 -0.266153 9 -0.418784 -0.0609797

4 0.325519 0.222766 10 0.218275 0.601643

5 0.222033 0.425989 11 0.327449 -0.324889

6 0.105111 0.212836
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Component2

P lot of F irs t T wc Component Wei^its

Component 1

Obr. 1 Graf komponentních vah pro první dvě hlavní komponenty

Na obr. 2 je znázorněn bodový diagram, který zobrazuje komponentní skóre, tj. 
hodnoty prvních dvou hlavních komponent u jednotlivých objektů. V číselném výstupu 
systému Statgraphics modulu Vícerozměrná data byly uloženy hodnoty hlavních 
komponent jednotlivých objektů. V tab. 4 jsou uvedeny hodnoty prvních dvou hlavních 
komponent jednotlivých objektů.
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Plot of Firs t Two Principal Components

Component 1

Obr. 2 Bodový diagram klasifikuje data dle prvních dvou hlavních komponent

Z grafu na obr. 2 je zřejmé, že lze soubor testovaných objektů rozdělit na 
4 shluky. Nejpočetnější shluk tvoří skupina objektů, které jsou na grafu bez označení, 
vyjma objektu 50. Tento objekt je dalšími metodami zařazen do jiného shluku 
(viz kapitola 4.2 a 4.3). Druhý shluk představuje skupina objektů č. 17, 18, 49, 62 - 66, 
68 - 70, 72 a 73. Třetí shluk tvoří čtyři objekty č. 16, 51, 67 a 71. Zcela ojediněle je 
v grafu na obr. 2 umístěn objekt č. 19, který představuje čtvrtý shluk. První shluk tvoří 
objekty resp. vzorky jílovců, které byly odebrány ve svrchní části vrtů VI, V2, V3 a V4. 
Ze spodní části uvedených vrtů jsou vzorky jílovců, které byly zařazeny do shluku 2, 3 
a 4. Vzhledem k poloze vzorků ve vrtech lze očekávat i odlišné chemické 
a technologické vlastnosti vzorků. Svrchní části vrtů jsou tvořeny jílovcem s vyšším 
obsahem FezOs než v materiálech spodní části vrtů, dále byla ve vzorcích svrchní části 
vrtů zjištěna i vyšší ztráta žíháním, vyšší optimální vlhkost keramického těsta, větší 
hodnota délkových změn sušením i vyšší hodnota pevnosti v ohybu po vysušení než mají 
vzorky ze spodní části vrtů.
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Na obr. 3 je znázorněn dvojný graf, který kombinuje oba předchozí grafy. Body 
představují komponentní skóre jednotlivých objektů. Přímky spojující se v bodě (0,0) 
představují původní proměnné, délka každé přímky je úměrná svému příspěvku 
k prvním dvěma hlavním komponentám.

Z grafického výstupu na obr. 3 vyplývá, že za hlavní komponenty lze považovat 
obsah oxidu Si, AI, Fe, ztrátu žíháním, optimální vlhkost a velikost zrn pod 2 pm 
označenou zrn 1. Ostatní komponenty nebudou mít pro hodnocení suroviny zásadní 
význam, protože jsou v korelaci s některými proměnnými. Proměnná „alkálie“ je 
v korelaci s proměnnou „ztráta“, proměnné „DS“ a „PEVSUS“ jsou v korelaci 
s proměnnou „vlhkost“. Lze uvažovat i proměnnou „zrn2“ za dostatečně nezávislou, 
a proto i důležitou. Data byla standardizována, protože nejsou vyjádřena ve stejných 
jednotkách.

Biplotfor FirstTwD Prindpd ODrrponents

Component 1

Obr. 3 Dvojný graf přináší kombinaci grafu komponentních vah a bodového 
diagramu
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2. Shluková analýza

Shlukovou analýzou byla zkoumána podobnost vícerozměrných objektů. 
Na základě uvedeného byl datový soubor zpracován nehierarchickou metodou typických 
vzorků (metoda Seeded). Vzorky č.3, 66, 67 a 19 byly zadány jako objekty, které jsou 
typickými představiteli nově vytvořených čtyř shluků, tj. čtyř typů surovin. Programovým 
systémem byl proveden výpočet a rozdělení objektů do čtyř shluků. Přehled výsledků je 
uveden v tab. 5. Vstupní proměnné nejsou vyjádřeny ve stejných jednotkách, proto byla 
provedena standardizace.

Tab. 5: Výsledky shlukové nehierarchické analýzy vzorků č. 1 - 73
Results of Clustering by Seeded Method

Cluster Označení v grafech

4 a 5

Frequency Percentage Seed

1 (ostatní vzorky) A 54 73.9726 3

2 (vzorek č.l7, 18, 
48, 49, 62-66, 68-70, 
72, 73)

B 14 19.1781 66

3 (vzorek č. 50, 51, 
67, 71)

C 4 5.4795 67

4 (vzorek č.l9) E 1 1.3699 19

Jak vyplývá z tabulky 3, do skupiny č. 2 byly zařazeny objekty č. 17-19, 48, 49, 
62-66, 68-70, 72 a 73. Tyto objekty představují asi 19 % z celkového počtu objektů. 
Do skupiny č. 3 byly zařazeny objekty č. 50, 51, 67 a 72 a představují asi 5.5 %. 
Do skupiny č. 4 byl zařazen pouze objekt č. 19. Zbývající objekty, které představují 
74 %, byly zařazeny do skupiny č.l. Rozdělení objektů do shluků téměř koresponduje 
s rozdělením popsaném v předchozí kapitole 4.1. Výjimku tvoří pouze objekty č. 16 
a 50. Shlukovou analýzou byl objekt č. 16 zařazen do shluku 1 a objekt č. 50 do shluku 
3 a analýzou hlavních komponent bylo zařazení provedeno opačně, tj. objekt č. 16 byl 
zařazen do shluku 3 a objekt č. 50 do shluku 1. Grafické znázornění výsledků shlukové 
analýzy je provedeno na obr. 4 a 5. Na obr. 4 jsou hodnoty jednotlivých objektů 
znázorněny ve dvojrozměrném prostoru a na obr. 5 v trojrozměrném prostoru.
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Plotof Clusters

SiO2

Obr. 4 Graf čtyř shluků v dvojrozměrném prostoru (SiO2, AI2O3)
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Obr. 5 Graf čtyř shluků v trojrozměrném prostoru (SiOz, AI2O3, Fc2O3)

4.3 Grafické metody
4.3.1 Sun Ray Plot - graf slunečních paprsků

Grafickou metodou slunečních paprsků Sun Ray Plot bylo provedeno vizuální 
srovnání objektů z hlediska jejich porovnání s průměrným objektem. Pro každý objekt je 
nakreslen polygon z pěti paprsků, které představují 5 hlavních komponent, tj. SÍO2, 
AI2O3, Fe2O3, ztrátu žíháním a optimální vlhkost. Na obr. 6 je 73 polygonů testovaných 
vzorků a klíč je znázorněn na obr. 7. Dle vizuálního srovnání jednotlivých polygonů lze 
zaznamenat výraznější odlišnost tvaru polygonů u objektů č. 17 -19, 33, 48 - 51 au 
objektů č. 62-73 od ostatních polygonů.
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Obr. 6 Sun Ray Plot - graf slunečních paprsků pro proměnné: SiO2, AI2O3, Fe2O3, 
ztrátu žíháním a optimální vlhkost

Obr. 7 Klíč ke grafu slunečních paprsků
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4.3.2 Star Symbol Plot - hvězdicový symbolický graf

Graf, podobně jako předchozí, slouží k vizuálnímu zobrazení podobnosti 
vícerozměrných objektů. Pro každý objekt je nakreslen polygon z pěti paprsků, které 
představují 5 hlavních komponent, tj. SiO2, A12O3, Fe2O3, ztrátu žíháním a optimální 
vlhkost. Na obr. 8 je 73 polygonů testovaných vzorků a klíč je znázorněn na obr. 9. 
Dle vizuálního srovnání jednotlivých polygonů lze zaznamenat výraznější odlišnost tvaru 
polygonů i jejich velikosti od ostatních polygonů u testovaných objektů č. 16 - 19, 
u objektů č. 48 - 51 a u objektů č. 62-73.

Obr. 8 Star Symbol Plot - hvězdicový symbolický graf pro proměnné: SiO2, AI2O3, 
Fe2O3, ztrátu žíháním a optimální vlhkost
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Obr. 9 Klíč k hvězdicovému symbolickému grafu

5 .0 ZÁVĚR

Cílem předložené práce bylo zhodnocení vzorků nadložních sedimentů 
v severočeské pánvi metodou vícerozměrných dat na základě výsledků labora orních 
zkoušek a rozdělení nadložních sedimentů do surovinových typů. Vzhledem 
k průzkumným pracím v minulých letech lze na vybrané lokalitě předpokládat přítomnost 

minimálně 2 typů surovin.

Na základě statistického zpracování bylo možné zařadit jednotlivé vzorky 
nadložních jílovců do čtyř surovinových typů. Zjištěné surovinové typy lze zhodnotit 
formou geologicko-technologického řezu, kde je. provedeno grafické znázornění 
zjištěných typů surovin. Geologicko-technologický řez je veden čtyřmi vrty - VI, V2, 
V3 a V4 (viz obr. 10). Ve vrtu VI tvoří prvních 7,5 m navážka, kterou lze považovat za. 
nevhodnou surovinu. V geologicko-technologickém řezu jsou nevhodné suroviny 
označeny jako proplástek (Prp). V hloubce 7,5 m - 73,4 m byla zjištěna surovina typu 1. 
Od 73,4 m do 103,7 m se nachází vrstva uhelných jílovců, která je nevhodná pro 
keramičke zpracování. Od 103,7 m do 109,4 m se nachází surovina typu z a v Hloubce 
109,4-119,0 m byla zjištěna surovina typu 4, reprezentovaná objektem č. 19. V hloubce 
119,0 m končí vrt. Vrtem V2 byla od hloubky 0,0 do 50,7 m zastižena surovina typu 1. 
V této hloubce byly ukončeny i vrtné práce. Vrstva suroviny typu 2 ve vrtu V2, 
zakreslená v geologicko-technologickém řezu na obr. 10, je pouze idealizované 
dokončení na základě vyhodnocené suroviny v sousedních vrtech VI a V3. Vrt V3 byl 
realizován do hloubky 79,8 m. Od 0,3 do 54,2 m byla ve vrtu vyhodnocena surovina 
typu 1. V hloubce 54,2 - 67,7 m se nachází nevhodná surovina jílovců s uhelnou příměsí. 
Surovina typu 2 byla zjištěna v hloubce 67,7 - 73,6 m. V hloubce 73,6 - 79,8 m leží 
vrstva suroviny typu 3. Vrt V4 byl realizován do hloubky 92,5 m. Ve svrchní časti vrtu, 
v hloubce 2,0 - 41,0 m byla opět zjištěna surovina typu 1. Vrstva suroviny typu 2 se 
nachází v hloubce 41,0 - 67,2 m, 69,2 - 84,0 m a 86,3 - 92,5 m. Vzorky jílovců 
odebrané v hloubce 67,2 - 69,2 m a 84,0 - 86,3 m byly vyhodnoceny jako surovina 

typu 3.
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Jak již bylo uvedeno, předpokládala se přítomnost dvou typů surovin. 
Statistickým testováním byly určeny čtyři surovinové typy. Z geologicko- 
technologického řezu na obr. 10 vyplývá, že svrchní část řezu tvoří keramický materiál 
suroviny typu 1. Jedná se o keramzitovou surovinu, ze které je vyráběn keramzit 
rychlovýpalem. Surovinu typu 1 lze rovněž použít jako přísadovou surovinu pro výrobu 
cihlářských výrobků. Tuto surovinu je nutné ostřit, tzn. je nutný přídavek ostřící směsi, 
písku. Ve spodní části řezu byly jílovce vyhodnoceny jako surovinové typy 2, 3 a 4. Je 
nutné zdůraznit, že surovinový typ 3 je reprezentován čtyřmi vzorky a typ 4 pouze 
jedním vzorkem. Tyto tři typy surovin lze označit jako podskupiny kameninové suroviny.

Vyhodnocené suroviny jsou první etapou při průzkumu doprovodných surovin 
v severočeské pánvi. Na základě tohoto průzkumu je prováděna realizace doplňujících 
vrtů, odběry dalších vzorků a jejich laboratorní testování se zaměřením na zjištěné typy 
surovin. Geologicko-technologický řez bývá využíván případně i pro hodnocení báňsko- 
technologických podmínek.
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