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ABSTRAKT
Celosvětově je spalováním uhlí každý rok vyprodukováno přibližně 1 200 Mt vedlejších energetických 
produktů (VEP). V současnosti jsou považovány za odpadní materiály a jsou často deponovány, což vede 
k mnoha ekologickým problémům. Vedle dominantní alumo-silikátové matrice obsahují relativně vysoká 
množství kovů vzácných zemin (REE) a ostatních zájmových kovů, proto je o nich stále častěji uvažováno 
jako o materiálu použitelném ve stavebnictví a jako o zdroji zájmových kovů. Potenciální spojení obou 
směrů zpracování VEP-ů přináší prakticky bezodpadová sdružená pražná metoda spočívající v tepelném 
zpracování směsi VEP, CaCO3 a CaCl2. Touto metodou jsou v jednom kroku získávány zájmové prvky ve 
formě příslušných chloridů a ze zbytkového materiálu je získáván cementářský produkt. V tomto článku 
jsou popsány závislosti nejdůležitějších pražných parametrů na stupeň vytěkání Ti a Ga ve formě chloridů. 
Optimalizací pražných podmínek bylo dosaženo stupně vytěkání Ti téměř 56 % a Ga kolem 100 %.

Globally, around 1 200 Mt of coal combustion by-products (CCBs) are produced by burning coal each year. They are currently 
considered as waste materials and are often landfilled, leading to many environmental problems. In addition to the dominant 
alumo-silicate matrix, they contain relatively high amounts of rare earth elements (REE) and other valuable metals, which 
is why they are increasingly thought of as a material for use in construction industry and as a source of valuable metals.  
A potentially waste-free combined roasting method, consisting of heat treatment of a mixture of CCBs, CaCO3 and CaCl2, 
provides a potential link between the two directions of CCBs processing. In one step, this method produces valuable elements 
in the form of the respective chlorides, and a cement product is obtained from the residual material. In this article, the 
dependence of the most important roasting parameters on the degree of extraction of Ti and Ga in the form of chlorides is 
described. Optimising the roasting conditions has achieved the degree of extraction of Ti nearly 56 % and Ga around 100 %. . 

Weltweit fallen jährlich ca. 1.200 Mio. t energetische Nebenprodukte (EBP) aus der Kohleverbrennung an. Derzeit werden 
sie als Abfall betrachtet und häufig deponiert, was zu zahlreichen Umweltproblemen führt. Neben der vorherrschenden 
Aluminium-Silikat-Matrix enthalten sie relativ hohe Mengen an seltenen Erdmetallen (REE) und anderen interessanten 
Metallen und werden daher zunehmend als Baumaterial und als Quelle der Metalle vom Interesse in Betracht gezogen. Ein 
mögliches Bindeglied zwischen den beiden Richtungen der Verarbeitung von EBP ist das praktisch abfallfreie kombinierte 
Röstverfahren, das in der thermischen Behandlung einer Mischung aus EBP, CaCO3 und CaCl2 besteht. Bei diesem Verfahren 
werden die  Elemente vom Interesse in einem Schritt in Form der jeweiligen Chloride extrahiert und aus dem Restmaterial 
wird das Zementprodukt gewonnen. In dieser Arbeit werden die Abhängigkeiten der wichtigsten Röstparameter vom Grad 
der Ti- und Ga-Extraktion in Form von Chloriden beschrieben. Durch Optimierung der Röstbedingungen konnte eine Ti-
Rückgewinnungsrate von fast 56% und eine Ga-Rückgewinnungsrate von etwa 100% erreicht werden.
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1  |  ÚVOD

Uhelné popílky v současnosti zaujímají od 40 do 
90 % objemu všech vedlejších produktů vznikají-
cích při spalování uhlí v tepelných elektrárnách [1], 
což ročně představuje celosvětově zhruba 800 Mt 
[2-3]. Na většinu vedlejších energetických produktů 
(VEP), mezi které patří i popílky, je stále v převážné 
části pohlíženo jako na odpadní materiály a jsou 
často ukládány na různých skládkách a představují 
značnou ekologickou zátěž. Nicméně část popílků 
se v současnosti využívá především ve stavebnic-
tví jako příměs do cementu a betonu, v konstrukci 
silničních staveb a jako vyplňovací materiál, malé 
množství popílků se spotřebovává v zemědělství 
[4]. Vedle zmíněných aplikací je zkoumáno mnoho 

dalších potenciálních možností pro opětovné využití 
popílků jako jsou geopolymery, cenosféra, adsor-
benty pro zachytávání organických a anorganických 
nečistot či skleníkových plynů, filtrační materiály  
a suroviny pro výrobu keramiky [5-7]. 

Rostoucí materiálové nároky na strategické kovy, 
tlak na nízkouhlíkové technologie a cirkulární eko-
nomiku přitahuje pozornost k možnostem širšího 
využití popílků a všeobecně VEP-ů. Doposud byly 
zkoumány jak pyrometalurgické metody zpraco-
vání, tak i hydrometalurgické metody zaměřené na 
extrakci zájmových kovů. Mezi hlavní pyrometalur-
gické směry zpracování popílků patří (karbo)chlo-
race, převážně zaměřená na získávání Al, Fe, Si, Mg 
a Ca [7-9], a pražení s různými činidly za účelem 
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převedení zájmových prvků do rozpustné formy, 
nejčastěji k extrakci Ge, Ce a Al [10-12]. Nejčastěji 
zkoumanými hydrometalurgickými metodami je 
loužení v H2SO4 [13], HCl [14], NaOH [15] a NH4HSO4 
[16]. Všechny zmíněné metody jsou omezeny vzni-
kem relativně velkého množství odpadního mate-
riálu a rentabilitou celého procesu, proto zatím 
žádný z nich není používán v širším měřítku.

Popílky ze spalování uhlí jsou komplexní mate-
riál složený převážně z SiO2, Al2O3, CaO, Fe2O3, MgO, 
Na2O and K2O, obsahují řádově stovky ppm REE  
a až 2 % ostatních zájmových kovů jako jsou Ti, 
Zn, Ga, Ge, atp. Chemické složení a zároveň obsah 
zájmových kovů jsou silně závislé na spalovaném 
uhlí i použité technologii spalování. Přehled složení 
popílků, obsahu vybraných kovů a REE je v celosvě-
tově produkovaných popílcích uveden v tabulce 1. 

Myšlenkou metody, kterou přináší tato práce, 
je spojení obou zmíněných směrů zpracování po-
pílků v prakticky bezodpadové metodě zpracování 
sdruženou pražnou chloridačně-cementářskou me- 
todou. Touto metodou jsou na jedné straně získá-
vány zájmové kovy, v tomto případě Ti a Ga, ve formě 
plynných chloridů a na druhé straně ze zbylého 

materiálu vzniká cementářský produkt ve formě 
slínku či strusky.

2  |  EXPERIMENT

2.1  |  MATERIÁL

Pro potřeby experimentálního ověření navržené 
metody byla vybrána směs strusky a popílku zís-
kaná na odkališti VEP v České republice. Vzorek 
byl získán pomocí vrtu hlubokého 30 metrů, kdy 
bylo vrtné jádro homogenizováno a následně bylo 
odebráno reprezentativní množství materiálu pro 
potřeby experimentů. Takto odebraný materiál byl 
sušen 48 hodin při 60 °C a následně mlet 20 sekund 
v litinovém vibračním planetárním mlýnu, aby bylo 
dosaženo pouze rozpadu slepenců, nikoli však sní-
žení velikosti částic základního materiálu.

Chemické, mineralogické a fyzikální vlastnosti 
vstupního materiálu směsi strusky a popílku byly 
stanoveny následujícími metodami:

•	 Prvkové složení bylo stanoveno metodou XRF 
(rentgenové fluorescence) a ověřeno meto-
dou ICP-OES (optická emisní spektrometrie 

Obsah oxidu (hm. %)

SiO2
TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5

27,8-80,0 0,1-3,7 1,0-55,0 1,0-25,5 0,03-1,4 0,1-11,0 0,6-52,0 0,1-6,4 0,1-6,7 0,1-3,9

Koncentrace kovu (ppm)

Zn Ga Ge As Se Rb Sr Li Be V

11-7230 49-324 12-432 6-955 1-26 10-310 53-2624 162-271 4-15 260-6256

Koncentrace kovu (ppm)

Cr Co Ni Cu La Ce Pr Nd Sm Eu

85-514 22-62 20-2296 13-392 34-138 70-290 3-48 13-114 3-22 1-4

Koncentrace kovu (ppm)

Gd Tb Dy Ho Er Tm Yb Lu Y Sc

3-23 1-3 3-21 1-4 2-12 0,3-1,7 2-11 0,3-2 18-110 7-45

Tabulka 1: Rozsah složení vybraných kovů v popílcích – přehled celosvětový [8, 10, 13, 16-53].

Obsah oxidu (hm. %)

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5

XRF 34,36 7,13 26,83 5,56 0,07 0,65 2,96 1,05 0,37 0,56

ICP 39,18 6,16 29,24 5,32 0,09 0,70 2,22 0,81 0,57 0,47

Koncentrace kovu (ppm)

Zn Ga Ge Cr Ni Cu Nb Zr Ba V

XRF 98 45 m. d. 130 166 479 187 817 2317 345

ICP 82 52 8 171 85 385 222 711 1227 699

Tabulka 2: Prvkové složení směsi strusky a popílku – XRF a ICP-OES

Poznámka: m.d. = pod mezí detekce
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s indukčně vázaným plazmatem). Výsledky 
jsou uvedeny v tabulce 2. 

•	 Mineralogické složení metodou XRD (rentge-
nové difrakce), tabulka 3 a obrázek č. 1.

•	 Analýza prvkového rozložení pomocí SEM-EDS 
(Skenovací elektronová mikroskopie-energe-
tické disperzní spektroskopie), obrázek č. 2. 

•	 Analýza distribuce velikosti částic pomocí la-
serové difrakce, obrázek č. 3.

Mineralogické složení ukazuje na komplexnost 
materiálu s vysokým zastoupením křemičitých a alu- 
mo-silikátových struktur. Titan je zastoupen jak ve 
formě rutilu, tak anatasu.

Z prvkového rozložení je patrné, že převážná 
část Ti je v popílku vázána společně s Si a Al, zřejmě  
v mullitové struktuře. Vedle těchto částic jsou v po-
pílku patrně přítomny i částice prakticky čistého 
oxidu Ti. Dále je patrné, že Fe nevstupuje do struktur 
společně s Ti a je převážně zastoupeno v Fe boha-
tých částicích společně s Ca a O.

Chemikálie
•	 Chlorid vápenatý bezvodý práškový p.a., vý-

robce Penta s.r.o.
•	 Uhličitan vápenatý srážený p.a., výrobce 

Penta s.r.o.
•	 Chlor plyn ≥ 0,998 kg/kg, výrobce GHC Ger-

ling, Holz & Co.

2.2  |  METODA

Princip metody je pražení VEP-ů společně s CaCl2 
a CaCO3. Chlorid vápenatý ve směsi vystupuje jako 
chloridační činidlo, jeho účinek je popsán reakcemi 
(1) a (2), CaCO3 má dvojí účinek. Způsobuje dezin-
tegraci alumo-silikátových struktur a zároveň upra-
vuje v cementářském průmyslu důležitý faktor  
LSF (faktor sycení vápnem). Schematické znázorně- 
ní metody je vyobrazeno na obrázku č. 4.

TiO2 + 2CaCl2 → TiCl4 + 2CaO		              (1)

Ga2O3 + 3CaCl2 → 2GaCl3 + 3CaO		             (2)

Experimenty byly koncipovány tak, aby byla sta-
novena závislost teploty a času pražení, poměru 
CaCO3 a CaCl2 v pražené směsi a vlivu odtahu pec- 

Název minerálu Chemický vzorec Semikvant. (%)

Mullit, syn Al2,34Si0,66O4,83 63

Křemen, syn SiO2 18

Kristobalit SiO2 2

Anortit Ca0,8Na0,2Al1,77Si2,23O8 10

Rutile, syn TiO2 2

Anatase, syn TiO2 6

Skelná fáze - ANO

Tabulka 3: Mineralogické složení směsi strusky a popílku.

Obr. 1: Difraktogram směsi strusky a popílku.

TECHNOLOGIE



6 | www.zpravodajhu.cz

Obr. 2: Rozložení prvků ve směsi strusky a popílku metodou SEM/EDS.

Obr. 3: Graf rozložení velikost částic.
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ních plynů na stupeň vytěkání. Přehled provede-
ných experimentů, včetně experimentálních podmí-
nek, je uveden v tabulce 4.

Účinnost konverze Ti a Ga na TiCl4 a GaCl3 byla 
stanovena podle rovnice (3), kde yTi  je obsah Ti/Ga 
ve výsledném praženci stanovený pomocí XRF ana- 
lýzy, xTi je obsah Ti/Ga ve výchozí navážce, mf je  
hmotnost pražence, ms hmotnost navážky a η účin- 
nost v %.

Aparatura

Pražení bylo uskutečněno ve vertikální trubkové 
peci s řízeným ohřevem vzorku 15 °C/min a s mož-
ností odvodu pecních plynů. Schematické znázor- 
nění použitého zařízení je uvedeno na obrázku č. 5.

Analytické metody

Rentgenové fluorescence (XRF) - spektrometr 
Axios, PANanalytical, Almelo, Holland, WinXRF ve 
vakuu. Vyhodnocováno v programu Uniquant 4 na 
základě vnitřních standardů. 

Rentgenové difrakce (XRD) - difraktometr PAN-
analytical X'Pert3 Powder, PANanalytical, Almelo, 

Obr. 4: Schematické znázornění sdružené pražné metody.

Označení
Poměr CaCl2 : Ti 

[mol]
Poměr CaCO3 : Al2O3 

[mol]
Teplota [°C] Čas [h]

Odvod pecních plynů
1 2 1 2

P-1 4 0 500 X 2 X Ne

P-2 4 0 600 X 2 X Ne

P-3 4 0 700 X 2 X Ne

P-4 4 0 800 X 2 X Ne

P-5 4 0 900 X 2 X Ne

P-6 4 0 1000 X 2 X Ne

P-7 4 0 1100 X 2 X Ne

P-8 4 2 600 X 0,5 X Ne

P-9 4 2 600 X 1 X Ne

P-10 4 2 600 X 2 X Ne

P-11 4 2 600 X 4 X Ne

P-12 4 0,5 600 X 2 X Ne

P-13 4 1 600 X 2 X Ne

P-14 4 1,5 600 X 2 X Ne

P-15 4 2,5 600 X 2 X Ne

P-16 6 2 600 X 2 X Ne

P-17 8 2 600 X 2 X Ne

P-18 8 2,5 600 700 4 0,5 od 601 °C

Tabulka 4: Přehled provedených experimentů sdruženého pražení a reakčních podmínek.

ηTi = 100 -
yTi ∙ mf ∙ 100

xTi ∙ ms

 (3)
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Holland. XRD prášková data byla naměřena při 
pokojové teplotě na θ-θ práškovém difraktometru 
X'Pert3 Powder v Bragg-Brentanově parafo-kusu-
jící geometrii s použitím vlnové délky CuKα záření 
(λ = 1.5418 Å, U = 40 kV, I = 30 mA). Data byla na- 
skenována pomocí ultrarychlého 1D detector PIX- 
CEL v úhlovém rozsahu 5-60° (2θ) s krokem měření 
0.013° (2θ) a časem čítaní 56.86 s krok-1. Vyhodnocení 
dat bylo provedeno programem HighScore Plus 4.0. 
Kalibrace na standard krystalu Si. Jedná se o semi-
kvantitativní metodu.

Laserová difrakce - Analysette 22, Fritsch GmbH, 
Idar-Oberstein, Germany.

Skenovací elektronový mikroskop (SEM) - TESCAN 
VEGA 3 LMU, Brno, Czech Republic s energetickou 
disperzní spektroskopií (EDS) - analyzátor Oxford 
Instruments INCA 350, High Wycombe, England.

Optický emisní spektrometr s indukčně vázaným 
plazmatem (ICP-OES) - Agilent 5100, Agilent, Santa 
Clara, CA, United States.

3  |  VÝSLEDKY A DISKUZE

3.1  |  VLIV TEPLOTY PRAŽENÍ NA STUPEŇ KON-
VERZE TI A GA 

V úvodní fázi výzkumu byla zkoumána závislost 
teploty pražení bez přídavku CaCO3. Teplotní závis-
lost vykazuje v případě stupně konverze Ti i Ga dvě 
maxima (viz obrázek č. 6), nízkoteplotní při 600 °C 
(respektive 500 °C) a vysokoteplotní v rozmezí od 
900 °C do 1 000 °C. Nejvyššího stupně konverze Ti 
(23,7 %) bylo dosaženo při teplotě 600 °C. Výsledky 
mineralogického složení praženců uvedených v ta- 

bulce 5 a obrázku č. 7 ukazují, že vyšší teploty praže- 
ní přispívají ke vzniku směsných oxidů Ti, Ca, Fe,  
Al a Si. Naopak za nižších teplot dochází ve vyšší míře 
ke vzniku sloučenin obsahujících Cl. Zároveň nižší 
teploty pražení vedou k zachování původních mi- 
nerálních složek popílku jako jsou hlavně mullit, 
CaCl2, SiO2 a hematit. 

3.2  |  VLIV ČASU PRAŽENÍ NA STUPEŇ KONVERZE 
TI A GA

Na základě teplotní závislosti byla pro další zkou-
mání zvolena teplota pražení 600 °C. Graf časové 
závislosti na stupeň konverze Ti (obrázek č. 8) uka-
zuje, že rostoucí čas pražení má na stupeň kon-
verze pozitivní vliv v celém zkoumaném intervalu, 
avšak pouze v řádu nízkých jednotek procenta. Pro 
následné experimenty byla zvolena doba pražení  
2 hodiny.

Stupeň konverze Ga se ve všech případech pohy-
boval shodně kolem 100 %, a proto není v grafu 
zobrazen.

3.3  |  VLIV SLOŽENÍ PRAŽNÉ SMĚSI NA STUPEŇ 
KONVERZE TI A GA

Závěrečná fáze výzkumu byla zaměřena na stano-
vení vlivu složení pražné směsi a na optimalizaci 
pražných podmínek pro maximalizaci účinnosti. Ze 
studia závislostních trendů jednotlivých parametrů 
pražení bylo zjištěno, že stupeň konverze Ti roste  
s rostoucím poměrem CaCO3 do poměru 2 moly na 
1 mol Al2O3. Nad tímto poměrem mělo další zvyšo-
vání obsahu vápence jen minimální vliv. Zároveň byl 
pozorován pozitivní vliv na tvorbu TiCl4 při zvýšení 

Obr. 5: Schéma vertikální pece s odvodem a chlazením pecních plynů.
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poměru CaCl2 ve směsi. Zmíněné trendy jsou vyob-
razeny na obrázcích č. 9 a 10. Ve všech závislostech 
není zobrazena závislost konverze Ga, jelikož ve 
všech případech se pohybovala kolem 100 %.

Mineralogickou analýzou (tabulka 6 a obrázek  
č. 11) praženců bylo zjištěno, že obsah zbytkového 
CaCl2 roste s rostoucím poměrem přidávaného 
CaCl2 a naopak klesá s rostoucím poměrem CaCO3  
a časem. Tento jev je přímo protichůdný k rostou-
címu zastoupení alumo-silikátových struktur obsa-
hující Ca a Cl (Ca3(SiO4)Cl2 a wadalit). Z těchto dvou 
trendů je možné usuzovat, že rostoucí poměr CaCO3 
ve směsi a rostoucí čas pražení podporují reakční 
potenciál CaCO3 a CaCl2 pro rozrušení původních 
alumo-silikátových struktur za vzniku nových. Při 
tomto rozrušení původních struktur se dá očekávat 

„uvolnění“ Ti vázaného v těchto strukturách pro 
chloraci. Tento předpoklad potvrzují závislosti 
stupně konverze Ti vyobrazených na obrázcích č. 8  
a 9. Z mineralogických složení je zároveň patrné, že 
vyšší teplota v druhé fázi pražení podporuje tvorbu 
wadalitu na úkor mullitu. Za optimalizovaných 
podmínek pražení (experiment s označením P-18) 
byl sledován pozitivní vliv odvodu pecních plynů  
v případě zahájení odtahu po 4 h pražení při 600 °C  
a pouze mírným zvýšením teploty na 700 °C a výdrži 
0,5 hodiny. Tímto nastavením procesu pražení bylo 
dosaženo nejvyššího stupně konverze Ti, který do-
sahoval hodnoty 55,8 %, oproti 41,4 % bez odvodu 
pecních plynů. 

Představené výsledky ukazují na skutečnost, že 
při sdružené pražné metodě probíhají dva konku-

Obr. 6: Závislost teploty pražení na stupeň konverze Ti a Ga; bez přídavku CaCO3; 2 h, 4 mol CaCl2.

Název minerálu Chemické složení
P-1 P-2 P-3 P-4 P-5 P-6 P-7

Semikvantitativní (%)

Esseneit CaFe0,6Al1,34Si1,08O6 7 9 14 25 23

Andradit, obsahující-Ti Ca3(Fe0,502Ti0,498)2(SiO4)3 9 8 6

Anortit CaAl2Si2O8 14 11 46 50 45 55 53

Sinjarit, syn CaCl2(H2O)2 36 29 26 27 8 2

Wadalit Ca6Al5Si2Cl3O16 21 10 6

Hematit, syn Fe2O3 6 5 4 4 2

Hydrophilit, syn CaCl2 13 21 6 4

Mullit, syn Al2,22Si0,78O4,89 24 23 11 6

Křemen, syn SiO2 7 10

Gehlenit Ca2Al2SiO7 12

Tabulka 5: Mineralogické složení praženců – teplotní závislost (XRD).
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renční děje. První je dekompozice původních alumo- 
silikátových struktur (uvolnění vázaného Ti pro mož- 
nost chlorace) a vznik nových alumo-silikátových 

struktur obsahujících Ca a Cl s vázaným Ti (znemož- 
ňující chloraci Ti). Pro maximalizaci účinnosti chlo-
race Ti je tedy nutné nastavit pražný proces tak, 

Obr. 8: Vliv času pražení na stupeň konverze Ti; 600 °C, 2 mol CaCO3, 4 mol CaCl2.

Obr. 9: Vliv poměru vápence v pražené směsi na stupeň konverze Ti; 600 °C, 2 h, 4 mol CaCl2.
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aby docházelo k rozkladu původních struktur (do-
statečný čas při nižších teplotách) a zároveň ne- 
docházelo ke vzniku nových struktur před vytěká-
ním Ti (zvýšení teploty pražení až po vytěkání Ti).

4  |  ZÁVĚR

Experimentálně bylo ověřeno, že navrženou sdru-
ženou chloridační-cementářskou metodou v pří-
tomnosti CaCl2 a CaCO3 je možné zpracovávat VEP-y 
s obsahem popílků ze spalování uhlí za účelem zisku 
Ti a Ga ve formě TiCl4 a GaCl3. V rámci jednotlivých 
parametrů pražení bylo zjištěno, že pozitivní vliv 
na stupeň konverze Ti v celém sledovaném inter-
valu má čas pražení a poměr CaCl2 v pražné směsi. 

Podobný vliv byl sledován také u poměru CaCO3  
v pražné směsi, avšak maximum bylo pozorováno 
při poměru 2 mol CaCO3:1 mol Al2O3. V závislosti na 
teplotě pražení bylo dosaženo maximálního stupně 
konverze Ti na TiCl4 při teplotě 600 °C. Ve většině 
experimentů bylo dosaženo stupně konverze Ga na 
GaCl3 kolem 100 %.

Na základě získaných výsledků bylo optimalizací 
parametrů procesu docíleno stupně vytěkání Ti ve 
formě TiCl4 55,8 % a Ga ve formě GaCl3 100 % při pod-
mínkách 600 °C, odvodu pecních plynů v závěrečné 
fázi pražení, 4 + 0,5 hodiny pražení, 2,5 mol CaCO3,  
8 mol CaCl2 a zvýšením teploty pražení ve finální fázi 
na 700 °C.

Název minerálu Chemický vzorec
P-8 P-9 P-10 P-11 P-12 P-13 P-14 P-15 P-16 P-17

Semikvantitativní (%)

Dichlorid-křemičitan trivápenatý Ca3(SiO4)Cl2 62 63 55 60 15 48 79 37 36

Sinjarit, syn CaCl2(H2O)2 17 19 18 3 59 53 23 3 55 44

Wadalit Ca6Al5Si2Cl3O16 9 15 3 10 6 5 6

Hematit, syn Fe2O3 6 2 2

Hydrophilit, syn CaCl2 1 1 6 8

Mullit, syn Al2.22Si0.78O4,89 16 14 17 13 20 14 14 12 8 5

Křemen, syn SiO2 6 4 4 14 6

Tabulka 6: Mineralogické složení praženců – složení pražné směsi (XRD).

Obr. 10: Vliv poměru CaCl2 v pražené směsi na stupeň konverze Ti; 600 °C, 2 h, 2 mol CaCO3.
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